A study of kinetic characteristics of biocidal action of copper oxide nanoparticles during climatic destruction and biocorrosion under extreme conditions of cold climate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/2

A study of kinetic characteristics of biocidal action of copper oxide nanoparticles during climatic destruction and biocorrosion under extreme conditions of cold climate

This research investigates kinetic characteristics of biocidal effects induced by copper(II) oxide nanoparticles on the growth dynamics of Penicillium chrysogenum fungal colonies at different temperatures. The influence of varying concentrations of CuO nanoparticles at different temperatures (4°C, 15°C, and 28°C) on colony growth rates was evaluated. Mathematical models were developed to accurately predict the dynamics of growth curves at different CuO concentration levels and thermal regimes. Key findings include that higher concentrations of CuO significantly suppress fungal colony expansion. An optimal range of 0.10-0.20% CuO was identified as effective for protecting polymer composites against biological corrosion. At lower temperatures, slower growth rates and extended lag phases are observed, while elevated temperatures accelerate both growth rates and reduce lag times. The logistic growth model exhibited strong correlation with experimental data, achieving high coefficients of determination (R2) in all tested scenarios. These results provide valuable insights into optimizing bioprotection strategies for polymer composite materials exposed to harsh environmental conditions such as permafrost regions.

Keywords

polymer composite materials, growth kinetics modeling, microbial population, biocidal effect, copper(ii) oxide nanoparticles, concentration, temperature, logistic growth model, R2 determination coefficient

Authors

NameOrganizationE-mail
Bondarchuk Ivan S.Tomsk State Universityivanich_91@mail.ru
Gerasimchuk Anna L.Tomsk State Universitygerasimchuk_ann@mail.ru
Glukhova Lyubov B.Tomsk State Universityglb122@yandex.ru
Marchenko Ekaterina S.Tomsk State University89138641814@mail.ru
Kychkin Aisen A.Federal Research Center Yakut Scientific Center, Siberian Branch of the Russian Academy of Sciencesicen.kychkin@mail.ru
Kychkin Anatoly K.Larionov Institute of Physical and Technical Problems of the Siberian Branch of the Russian Academy of Sciences Federal Research Center Yakut Scientific Center, Siberian Branch of the Russian Academy of Scienceskychkinplasma@mail.ru
Всего: 6

References

Bukvic M., Milojevic S., Gajevic S., Dordevic M., Stojanovic B. Production technologies and application of polymer composites in engineering: A Review // Polymers. 2025. V. 17 (16). Art. 2187. doi: 10.3390/polym17162187.
Wang Y., Ding Y., Yu K., Dong G. Innovative polymer-based composite materials in additive manufacturing: A review of methods, materials, and applications // Polymer composites. 2024. V. 45 (17). P. 15389-15420. doi: 10.1002/pc.28854.
Brebu M. Environmental degradation of plastic composites with natural fillers - A Review // Polymers. 2020. V. 12 (1). Art. 166. doi: 10.3390/polym12010166.
Jawar V. Designing composite materials for extreme environments: Aerospace and beyond // Journal of Nanosciences: Current Research. 2024. V. 9. Art. 261. doi: 10.37421/2572-0813.2024.9.261.
Korku M., Ilhan R., Feyzullahoglu E. Investigation of effects of environmental conditions on wear behaviors of glass fiber reinforced polyester composite materials // Polymer Composites. 2024. V. 46 (1). P. 355-371. doi: 10.1002/pc.28992.
Zhang X., Yin Z., Xiang S., Yan H., Tian H. Degradation of Polymer Materials in the Environ ment and Its Impact on the Health of Experimental Animals: A Review // Polymers. 2024. V. 16 (19). Art. 2807. doi: 10.3390/polym16192807.
Lebedev M.P., Startsev O. V., Kychkin A.K., Polyakov V.V. Effects of cold climates on polymer composite material properties // Procedia Structural Integrity. 2020. V. 30. P. 76-81. doi: 10.1016/j.prostr.2020.12.013.
Lukachevkaya I.G., Lebedev M.P., Struchkov N.F. Effect of the Environment on the Properties of Polymer Composite Materials // Theoretical Foundations of Chemical Engineering. 2021. V. 55. P. 1041-1044. doi: 10.1134/S0040579521050109.
Petrov M.G., Lebedev M.P., Startsev O.V., Kopyrin M.M. Effect of Low Temperatures and Moisture on the Strength Performance of Carbon Fiber Reinforced Plastic // Doklady Physical Chemistry. 2021. V. 500. P. 85-91. doi: 10.1134/S0012501621090037.
Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of Basalt Plastics in Open Climatic Conditions // Polymer Science. Series D. 2022. V. 15. P. 101-109. doi: 10.1134/S1995421222010191.
Haktaniyan M., Bradley M. Polymers showing intrinsic antimicrobial activity // Chemical Society Reviews. 2022. V. 51. P. 8584-8611. DOI: 10.1039/D2CS00558A.
Chen A., Peng H., Blakey I., Whittaker A.K. Biocidal Polymers: A Mechanistic Overview // Polymer Reviews. 2016. V. 57 (2). P. 276-310. doi: 10.1080/15583724.2016.1223131.
Glaser J.A. Biological Degradation of Polymers in the Environment // Plastics in the Environment / ed. by. A. Gomiero.IntechOpen, 2019. doi: 10.5772/intechopen.85124. URL: https://www.intechopen.com/chapters/66340.
Olmos D., Gonzalez-Benito J. Polymeric Materials with Antibacterial Activity: A Review // Polymers. 2021. V. 13 (4). Art. 613. doi: 10.3390/polym13040613.
Bryaskova R., Philipova N., Bakov V., Georgiev N. Innovative Antibacterial Polymer Coatings // Applied Sciences. 2025. V. 15 (4). Art. 1780. doi: 10.3390/app15041780.
Santos M.R.E., Fonseca A.C., Mendonca P.V., Branco R., Serra A.C., Morais P. V., Coelho J.F.J. Recent Developments in Antimicrobial Polymers: A Review // Materials. 2016. V. 9 (7). Art. 599. doi: 10.3390/ma9070599.
Starkova O., Gagani A.I., Karl C.W., Rocha I.B.C.M., Burlakovs J., Krauklis A.E. Modelling of Environmental Ageing of Polymers and Polymer Composites-Durability Prediction Methods // Polymers. 2022. V. 14 (5). Art. 907. doi: 10.3390/polym14050907.
Dintcheva N.T. Overview of polymers and biopolymers degradation and stabilization towards sustainability and materials circularity // Polymer. 2024. V. 306. Art. 127136. doi: 10.1016/j.polymer.2024.127136.
Rossetti I., Conte F., Ramis G. Kinetic Modelling of Biodegradability Data of Commercial Polymers Obtained under Aerobic Composting Conditions // Eng. 2021. V. 2 (1). P. 54-68. doi: 10.3390/eng2010005.
Baldera-Moreno Y., Pino V., Farres A., Banerjee A., Gordillo F., Andler R. Biotechnological Aspects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions // Polymers. 2022. V. 14 (3). Art. 375. doi: 10.3390/polym14030375.
Andreia da Silva S., Faccin D.J.L., Cardozo N.S.M. A Kinetic-Based Criterion for Polymer Biodegradability Applicable to Both Accelerated and Standard Long-Term Composting Biodegradation Tests // ACS Sustainable Chemistry & Engineering. 2024. V. 12 (32). P. 11856-11865. doi: 10.1021/acssuschemeng.3c03837.
Pedreira A., Vazquez J.A., Garcia M.R. Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations // Frontiers in Microbiology. 2022. V. 13. Art. 758237. doi: 10.3389/fmicb.2022.758237.
Peleg M. Selected challenges to modeling the kinetics of microbial inactivation and chemical reactions during food preservation // Current Opinion in Food Science. 2023. V. 51. Art. 101029. doi: 10.1016/j.cofs.2023.101029.
Peleg M. Modeling the dynamic kinetics of microbial disinfection with dissipating chemical agents - a theoretical investigation // Applied Microbiology and Biotechnology. 2021. V. 105. P. 539-549. doi: 10.1007/s00253-020-11042-8.
Liu M., Bauman L., Nogueira C.L., Aucoin M.G., Anderson W.A., Zhao B. Antimicrobial polymeric composites for high-touch surfaces in healthcare applications // Current Opinion in Biomedical Engineering. 2022. V. 22. Art. 100395. doi: 10.1016/j.cobme.2022.100395.
Sikora P., Augustyniak A., Cendrowski K., Nawrotek P., Mijowska E. Antimicrobial Activity of AkO3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials // Nanomaterials. 2018. V. 8. Art. 212. doi: 10.3390/nano8040212.
Jedrzejczak P., Lawniczak L., Slosarczyk A., Klapiszewski L. Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems // Materials. 2022. V. 15. Art. 661. doi: 10.3390/ma15020661.
Slosarczyk A., Klapiszewska I., Parus A., Balicki S., Kornaus K., Gapinski B., Wieczorowski M., Wilk K.A., Jesionowski T., Klapiszewski L. Antimicrobial action and chemical and physical properties of CuO-doped engineered cementitious composites // Scientific Reports. 2023. V. 13. Art. 10404. doi: 10.1038/s41598-023-37673-1.
Styszko K., Kupiec K. The rate of biocide leaching from porous renders // Chemical Engineering Research and Design. 2018. V. 132. P. 69-76. doi: 10.1016/j.cherd.2017.12.047.
Erich S.J.F., Baukh V. Modelling biocide release based on coating properties // Progress in Organic Coatings. 2016. V. 90. P. 171-177. doi: 10.1016/j.porgcoat.2015.10.009.
Zwietering M.H., Jongenburger I., Rombouts F.M., Van’t Riet K. Modeling of the Bacterial Growth Curve // Applied and Environmental Microbiology. 1990. V. 56 (6). P. 1875-1881. doi: 10.1128/aem.56.6.1875-1881.1990.
Gudkov S.V., Burmistrov D.E., Fomina P.A., Validov S.Z., Kozlov V.A. Antibacterial Properties of Copper Oxide Nanoparticles (Review) // International Journal of Molecular Sciences. 2024. V. 25 (21). Art. 11563. doi: 10.3390/ijms252111563.
 A study of kinetic characteristics of biocidal action of copper oxide nanoparticles during climatic destruction and biocorrosion under extreme conditions of cold climate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/2

A study of kinetic characteristics of biocidal action of copper oxide nanoparticles during climatic destruction and biocorrosion under extreme conditions of cold climate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/2

Download full-text version
Counter downloads: 42