Estimates of analytical functions whose ranges of values are contained in a circular lune | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/3

Estimates of analytical functions whose ranges of values are contained in a circular lune

The article introduces a class of analytical functions in a unit circle that have missing terms in the power series expansion. Their range of values is contained in a circular lune located in the right half-plane relative to the imaginary axis and symmetric relative to the real axis, one of the vertices of which is located at point 0. In this class of functions, the problem of finding the exact upper boundary of the modulus of the logarithmic derivative and the boundaries from below and above the real part and the modulus of the function is solved. Such results have always served as the basis for solving a number of extreme problems on subclasses of functions fz), analytical in the unit circle and normalized by the condition f (0) = f '(0) -1 = 0 . Some particular cases, when a circular lune degenerates into a circle or angle, yield well-known estimates established by such authors as T.H. MacGregor, R.M. Goel, D.B. Shaffer, and G.M. Shah and used by many researchers for decades to solve extreme problems. As an example of applications of the main result, the radius of starlikeness of one wide class of doubly close-to-starlike functions is obtained, which in particular cases gives a number of well-known results obtained in recent years.

Keywords

estimates of analytical functions, close-to-starlike functions, radii of starlikeness

Authors

NameOrganizationE-mail
Maiyer Fedor F.Kostanay Regional University named after A. Baitursynulymaiyer@mail.ru
Tastanov Meyrambek G.Kostanay Regional University named after A. Baitursynulytastao@mail.ru
Utemissova Anar A.Kostanay Regional University named after A. Baitursynulyanar_utemisova@mail.ru
Всего: 3

References

MacGregor T.H. Functions whose derivative has a positive real part // Trans. Amer. Math. Soc. 1962. V 104. P. 532-537. doi: 10.1090/s0002-9947-1962-0140674-7.
MacGregor T.H. The radius of univalence of certain analytic functions // Proc. Amer. Math. Soc. 1963. V 14, P. 514-520.
MacGregor T.H. The radius of univalence of certain analytic functions, II // Proc. Am. Math. Soc. 1963. V 14. P. 521-524. doi: 10.1090/s0002-9939-1963-0148892-5.
Goel R.M. A class of close-to-convex functions // Czechoslovak Math. J. 1968. V. 18 (93). P. 104-116. doi: 10.21136/CMJ.1968.100815.
Shaffer D.B. Distortion theorems for a special class of analytic functions // Proc. Amer. Math. Soc. 1973. V. 39 (2). P. 281-287. doi: 10.2307/2039632.
Shah G.M. On the univalence of some analytic functions // Pacific J. Math. 1972. V 43 (1). P. 239-250. doi: 10.2140/pjm.1972.43.239.
Anh V.V., Tuan P.D. Extremal problems for a class of functions of positive real part and appli cations // Austral. Math. Soc. (Series A). 1986. V. 41. P. 152-164. doi: 10.1017/ S1446788700033577.
El-Faqeer A.S.A., Mohd M.H., Ravichandran V., Supramaniam S. Starlikeness of certain ana lytic functions // arXiv preprint. arXiv:2006.11734. 2020. doi 10.48550/arXiv.2006.11734. URL: https://arxiv.org/abs/2006.11734.
Sebastian A., Ravichandran V. Radius of starlikeness of certain analytic functions // Math. Slovaca. 2021. V. 71 (1). P. 83-104. doi: 10.1515/ms-2017-0454.
Kanaga R., Ravichandran V. Starlikeness for certain close-to-star functions // Hacet. J. Math. Stat. 2021. V. 50 (2). P. 414-432. doi: 10.15672/hujms.702703.
Ali R.M., Jain N.K., Ravichandran V. On the radius constants for classes of analytic functions // arXiv preprint. arXiv:1207.4529v1 [math.CV]. 2012. doi: 10.48550/arXiv.1207.4529. URL: https://arxiv.org/abs/1207.4529.
Khatter K., Lee S.K., Ravichandran V. Radius of starlikeness for classes of analytic functions // arXiv preprint. arXiv: 2006.11744. 2020. doi: 10.48550/arXiv.2006.11744. URL: https://arxiv.org/abs/2006.11744.
Rosihan M.A., Ravichandran V., Sharma K. Starlikeness of analytic functions with subordinate ratios // Hindawi J. of Math. 2021. V. 2021. Art. 8373209. P. 1-8. doi: 10.1155/2021/8373209.
Майер Ф.Ф., Тастанов М.Г., Утемисова А.А., Ысмагул Р.С. Точные оценки регулярных функций и радиусы выпуклости и звездообразности некоторых классов звездообразных и почти звездообразных функций // Вестник Казахстанско-Британского технического университета. 2024. Т. 21, № 2. С. 127-138. doi: 10.55452/1998-6688-2024-21-2-127-138.
Митюк И.П. Оценки в некоторых классах аналитических функций // Метрические вопросы теории функций. Киев: Наукова думка, 1980. С. 90-99.
Haegi H.R. Extremalprobleme und Ungleichungen konformer GebietsgroBen // Compositio Mathematics. 1951. V. 8. P. 81-111.
Полиа Г., Сегё Г. Изопериметрические неравенства в математической физике. М.: Физматгиз, 1962. 336 с.
Shaffer D.B. On bounds for the derivative of analytic functions // Proc. Amer. Math. Soc. 1973. V. 37. P. 517-520.
McCarty C.P. Functions with real part greater than a // Proc. Amer. Math. Soc. 1972. V. 35. P. 211-216.
Libera R.J. Some radius of convexity problems // Duke Math. J. 1964. V. 31. P. 143-158.
Jakubowski Z.J. On the coefficients of star-like functions of some classes // Ann. Polon. Math. 1972. V. 26/ P. 305-313.
 Estimates of analytical functions whose ranges of values are contained in a circular lune | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/3

Estimates of analytical functions whose ranges of values are contained in a circular lune | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/3

Download full-text version
Counter downloads: 42