Formulation of constitutive relations for nonlinear elastic media using a mechanical–geometric model with diagonal bonds | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/5

Formulation of constitutive relations for nonlinear elastic media using a mechanical–geometric model with diagonal bonds

The formulation of constitutive relations for hyperelastic materials is one of the important problems of nonlinear mechanics. A new approach - the method of mechanical-geometric modeling - is proposed. This method makes it possible to derive constitutive relations for a nonlinear medium based on a chosen geometry of the model and specified mechanical parameters. The properties embedded in the model at the construction stage are subsequently transferred to the simulated continuum. This enables the formulation of a strain energy density function of the continuum corresponding to the selected model. This paper presents an algorithm for such construction using the model in the form of a rectangular parallelepiped as a case study. The initial stages of the model development are described, such as the selection of geometry and mechanical parameters that determine the properties of the model. The explicit constitutive relations connecting the nominal (engineering) stresses with the principal elongation ratios are obtained. The strain energy density function is then derived for a compressible nonlinear elastic material in terms of a symmetric dependence on three principal elongation ratios. Forms of the energy function are presented for both anisotropic and isotropic elastic media. Graphs of the strain energy function for an isotropic medium are plotted for several stress-strain states, i.e., uniaxial, biaxial, and equibiaxial tension, under the incompressibility constraint. References are given to the articles describing other initial geometric shapes and mechanical parameters of the model, which lead to different types of strain energy density functions. Possible directions for the further development of the mechanical-geometric modeling method are outlined.

Download file
Counter downloads: 3

Keywords

hyperelastic materials, constitutive relations, hyperelasticity, strain energy density, elastic potential, continuous medium, mechanical-geometric model, incompressibility

Authors

NameOrganizationE-mail
Azarov Daniil A.Don State Technical Universitydanila_az@mail.ru
Всего: 1

References

Mooney M. A theory of large elastic deformation. // Journal of Applied Physics. 1940. V. 11 (9). P. 582-592.
Rivlin R.S. Large Elastic Deformations of Isotropic Materials. III. Some Simple Problems in Cylindrical Polar Co-Ordinates // Phil. Trans. R. Soc. Lond. A. 1948. V. 240 (823). P. 509-525.
Yeoh O.H. Some forms of the strain energy function for rubber // Rubber Chemistry and tech nology. 1993. V. 66, is. 5. P. 754-771.
Blatz P.J., Ko W.L. Application of finite elasticity to the deformation of rubbery materials // Trans. Soc. Rheol. 1962. V. 6. P. 223-251.
Ogden R.W. Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids // Proc. Royal Soc. London. Series A. 1972. V. 326 (1567). P. 565-584.
Arruda E.M., Boyce M.C. A three-dimensional model for the large stretch behavior of rubber elastic materials // J. Mech. Phys. Solids. 1993. V. 41 (2). P. 389-412.
Gent A.N. A new constitutive relation for rubber // Rubber Chem. Technol. 1996. V. 69. P. 59-61.
Bazkiaei A.K., Shirazi K.H., Shishesaz M. A framework for model base hyper-elastic material simulation // J.Rubber Res. 2020. V. 23. P. 287-299. doi: 10.1007/s42464-020-00057-5.
de Bortoli D., Wrubleski E.G.M., Marczak R.J., Gheller J. Jr. Hyperfit - curve fitting software for incompressible hyperelastic material models // Proceedings of COBEM 2011, 21st Brazilian Congress of Mechanical Engineering, October 24-28, Natal, RN, Brazil. 2011.
Зингерман К.М. Проверка условия сильной эллиптичности для материала Мурнагана при всестороннем растяжении или сжатии. // Вестник Тверского государственного университета. Сер. Прикладная математика. 2003. № 1. С. 65-70.
Poynting J.H. On the changes in the dimensions of a steel wire when twisted and on the pressure of distortional waves in steel // Proc. Roy. Soc. London. Ser. A. 1912. V. 86. P. 534-561.
Азаров А.Д., Азаров Д.А. Трехмерная механическая модель для описания больших упругих деформаций при одноосном растяжении // Вестник Донского государственного технического университета. 2011. Т 11, № 2 (53). С. 147-156.
Азаров Д.А., Зубов Л.М. Механико-геометрическое моделирование в нелинейной теории упругости // Известия высших учебных заведений. Cеверо-Кавказский регион. Естественные науки. 2016. № 3 (191). С. 5-12.
Азаров Д.А. Идентификация параметров механико-геометрической модели при одноосном растяжении высокоэластичного материала // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. № 1. С. 5-14.
Azarov A.D., Azarov D.A. Description of non-linear viscoelastic deformations by the 3D mechanical model // Chapter 49 in Proceedings of the 2015 International Conference on “Physics, Mechanics of New Materials and Their Applications”, devoted to the 100th Anniversary of the Southern Federal University / I.A. Parinov, Shun-Hsyung, V.Yu. Topolov (eds.). New York: Nova Science Publishers, 2015. P. 367-375.
Азаров А.Д., Азаров Д.А. Сравнительный анализ потенциалов, полученных методом механико-геометрического моделирования с потенциалами Муни-Ривлина и Йео // XII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики: сб. тр., Уфа, 19-24 авг. 2019 г. Уфа: Башкир. гос. ун-т, 2019. Т. 3. С. 42-44.
 Formulation of constitutive relations for nonlinear elastic media using a mechanical–geometric model with diagonal bonds | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/5

Formulation of constitutive relations for nonlinear elastic media using a mechanical–geometric model with diagonal bonds | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/5

Download full-text version
Counter downloads: 42