Impact of the electromagnetic field on the properties of porous materials containing complex colloidal mixtures of organic compounds
A number of studies have examined the influence of electromagnetic fields (EMFs) on petroleum liquids. An interesting problem is to investigate the behavior of these liquids in porous media due to the presence of complex hydrocarbons. This paper investigates the features of the viscous oil flow in porous-medium models under EMF exposure. The main component of the experimental setup was a cell with electrodes positioned both across and along the flow direction. It was found that the maximum value of the dielectric loss tangent was reached at a frequency of 5 MHz. The dynamic viscosity coefficient increased after EMF exposure, indicating structural changes in the oil. The fluid flow rate was measured as a function of temperature at different pressure levels. The application of the field led to a decrease in the flow rate compared to filtration without exposure. Considering the design features of the micromodel and the measured dynamic viscosity coefficient, it was assumed that the effect was caused by the dielectrophoretic forces acting on the polar components of the oil and their structural transformation. Such a reduction of the flow rate can be explained by the increased dynamic viscosity and deterioration of the filtration characteristics of the porous medium, which results in a blocking effect in the local areas closest to the electrodes, where the highest electric-field-strength gradient is formed.
Keywords
filtration,
permeability,
dynamic viscosity coefficient,
alternating electromagnetic fieldAuthors
| Valiullina Vilena I. | Ufa University of Science and Technology | valiullina.vilena@mail.ru |
| Galeev Rushan R. | Ufa University of Science and Technology | galeevr93@gmail.com |
| Zinnatullin Rasul R. | Ufa University of Science and Technology | rasulz@yandex.ru |
| Musin Ayrat A. | Ufa University of Science and Technology | mus-airat@yandex.ru |
| Kovaleva Liana A. | Ufa University of Science and Technology | liana-kovaleva@yandex.ru |
Всего: 5
References
Asphaltenes and Asphalts / G.V. Chilingarian, T.F. Yen (eds.). Amsterdam: Elsevier, 1994. V. 1. 451 p.
Yakubov M.R., Abilova G.R., Yakubova S.G., Milordov D.V. Mironov N.A. Heavy oil resin com position and their influence on asphaltene stability // The Chemistry of Oil and Petroleum Products. Berlin: De Gruyter: 2022. P. 177-202. doi: 10.1515/9783110694529-004.
Wong G.K., Yen T.F. An electron spin resonance probe method for the understanding of petro leum asphaltene macrostructure // Journal of Petroleum Science and Engineering. 2000. V. 28 (1-2). P. 55-64. doi: 10.1016/S0920-4105(00)00067-X.
Steinborn R., Flock D.L. The rheology of heavy crude oils and their emulsions // Journal of Canadian Petroleum Technology. 1983. V. 22 (05). doi: 10.2118/83-05-03.
Hasan S.W., Ghannam M.T., Esmail N. Heavy crude oil viscosity reduction and rheology for pipeline transportation // Fuel. 2010. V. 89 (5). P. 1095-1100. doi: 10.1016/j.fuel.2009.12.021.
Luo P., Gu Y. Characterization of a heavy oil-propane system in the presence or absence of asphaltene precipitation // Fluid Phase Equilibria. 2009. V. 277 (1). P 1 -8 doi: 10.1016/j.fluid.2008.10.019.
Рахимов А.А., Валиев А.А. Особенности экспериментального изучения устойчивого и не устойчивого вытеснения в ячейке Хеле-Шоу, заполненной стеклянными шариками // Вестник Томского государственного университета. Математика и механика. 2022. № 77. С. 140-157. doi: 10.17223/19988621/77/11.
Пивоварова Н.А. Особенности межмолекулярного взаимодействия в нефтяных дисперс ных системах // Нефтегазовые технологии и экологическая безопасность. 2023. № 2. С. 23-33. doi: 10.24143/1812-9498-2023-2-23-33.
Evdokimov I.N., Eliseev N.Y., Eliseev D.Y. Rheological evidence of structural phase transitions in asphaltene-containing petroleum fluids // Journal of Petroleum Science and Engineering. 2001. V. 30 (3-4). P. 199-211. doi: 10.1016/S0920-4105(01)00132-2.
Wang S., Huang Y., Civan F. Experimental and theoretical investigation of the Zaoyuan field heavy oil flow through porous media // Journal of Petroleum Science and Engineering. 2006. V. 50 (2). P. 83-101 doi: 10.1016/j.petrol.2005.06.015.
Liu H., Wang J., Xie Y., Ma D., Shi X. Flow characteristics of heavy oil through porous media // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2011. V. 34 (4). P. 347-359. doi: 10.1080/15567036.2011.609868.
Mukhametshina A., Martynova E. Electromagnetic heating of heavy oil and bitumen: a review of experimental studies and field applications // Journal of Petroleum Engineering. 2013. V. 2013 (1). Art. 476519. doi: 10.1155/2013/476519.
Sysoev S., Kislitsin A. Modeling of microwave heating and oil filtration in stratum // Numerical Simulations - Applications, Examples and Theory / L. Angermann (ed.).IntechOpen, 2011. P. 237-250.
Mullayanov A.I., Musin A.A., Valiullina V.I., Kovaleva L.A. The features of the microemulsion structure changes under the nonhomogeneous alternating electric field impact // Letters on Materials. 2024. V. 14 (1). P. 57-61. doi: 10.48612/letters/2024-1-57-61.
Kovaleva L., Davletbaev A., Babadagli T., Stepanova Z. Effects of electrical and radio-frequency electromagnetic heating on the mass-transfer process during miscible injection for heavy-oil recovery // Energy & Fuels. 2011. V. 25 (2). P. 482-486. doi: 10.1021/ef1009428.
Zanganeh P., Ayatollahi S., Alamdari A., Zolghadr A., Dashti H., Kord S. Asphaltene Deposition during CO2 Injection and Pressure Depletion: A Visual Study // Energy Fuels. 2012. V. 26. P. 1412-1419. doi: 10.1021/ef2012744.
Joonaki E., Buckman J., Burgass R., Tohidi B. Water versus Asphaltenes; Liquid-Liquid and Solid-Liquid Molecular Interactions Unravel the Mechanisms behind an Improved Oil Recovery Methodology // Sci. Rep. 2019. V. 9. P. 1-13.
Kazemzadeh Y., Parsaei R., Riazi M. Experimental study of asphaltene precipitation prediction during gas injection to oil reservoirs by interfacial tension measurement. // Colloids Surfaces A Physicochem. Eng. Asp. 2015. V. 466. P. 138-146. doi: 10.1016/j.colsurfa.2014.10.053.
Tharanivasan A.K., Yarranton H.W., Taylor S.D. Asphaltene Precipitation from Crude Oils in the Presence of Emulsified Water. // Energy Fuels. 2012. V. 26. P. 6869-6875 doi: 10.1021/ef301200v.
Tavakkoli M., Chen A., Sung C.-A., Kidder K.M., Lee J.J., Alhassan S.M., Vargas F.M. Effect of Emulsified Water on Asphaltene Instability in Crude Oils. // Energy Fuels. 2016. V. 30. P. 3676-3686. doi: 10.1021/acs.energyfuels.5b02180.
Aslan S., Firoozabadi A. Effect of Water on Deposition, Aggregate Size, and Viscosity of Asphaltenes // Langmuir. 2014. V. 30. P. 3658-3664. doi: 10.1021/la404064t.
Hu C., Sabio J.C., Yen A., Joshi N., Hartman R.L. Role of Water on the Precipitation and Deposition of Asphaltenes in Packed-Bed Microreactors. // Ind. Eng. Chem. Res. 2015. V. 54. P. 4103-4112. doi: 10.1021/ie5038775.
Zamula Y.S., Afanasyev M.O., Batirshin E.S. Characterization of microemulsion structure using atomic force microscopy. // Letters on Materials. 2023. V. 13 (4). С. 286-291. doi: 10.22226/2410-3535-2023-4-286-291.
Kovaleva L.A., Mukharyamova G.I. Effects of electromagnetic treatment on rheological properties of oil: experiment and application // Journal of Engineering Physics and Thermophysics. 2021. V. 94 (3). P. 714-719. doi: 10.1007/s10891-021-02348-z.
Ha J. W., Yang S.M. Rheological responses of oil-in-oil emulsions in an electric field // Journal of Rheology. 2000. V. 44 (2). P. 235-256. doi: 10.1122/1.551084.
Лоскутова Ю.В., Юдина Н.В. Влияние магнитного поля на структурно-реологические свойства нефтей // Известия Томского политехнического университета. 2006. Т. 309, № 4. С.104-109.