Effect of rheologocal properties of polymer melts on kinematics of their flows in converging channeles | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/12

Effect of rheologocal properties of polymer melts on kinematics of their flows in converging channeles

This study uses a modified Vinogradov-Pokrovsky rheological model to investigate two-dimensional flows of polymer melts with different molecular structures in channels with a rectangular cross-section and a sudden contraction. The effect of the polymer structure on the flow behavior is analyzed. It is shown that the branched polymer exhibits a reverse flow in the entrance region of the slit channel, whereas the linear polymer does not induce secondary flows. This effect is found to be governed by the polymer relaxation time, i.e., the Weissenberg number. The profiles of the x- and y-components of the velocity vector are examined in several cross-sections upstream of the slit channel and within the channel. For the branched polymer, the x-component of the velocity takes both positive and negative values, and the y-compo-nent is directed away from the channel axis, which indicates the presence of a reverse flow. The branched polymer demonstrates a non-parabolic velocity profile in the slit channel, in contrast to the linear polymer, whose velocity distribution is close to parabolic. In all the considered cases, the computed velocity profiles are compared with the experimental data. The obtained results confirm the applicability of the modified Vinogradov-Pokrovsky rheological model for describing non-uniform flows of polymer melts, as well as the efficiency of finite-element-based computational methods for simulating unsteady two-dimensional flows of nonlinear viscoelastic media with a rheological law written in a differential form.

Keywords

rheology, viscosity, polymer melts, vortex flow, rheological equation of state, two-dimensional flows, finite element method

Authors

NameOrganizationE-mail
Pavlov Mikhail S.Tomsk Polytechnical Universitymspavlov@tpu.ru
Pavlyuk Yuriy A.Altai State Pedagogical Universitypawlyk1996@yandex.ru
Pyshnograi Grigoriy V.Altai State Technical Universitypyshnograi@mail.ru
Всего: 3

References

Langlois W.E. Steady flow of slightly visco-elastic fluids: Dissertation / Brown University, 1957.
Schummer P. Zum Flie Bverhalten Nicht-Newtonscher Flussigkeiten in konischen Dusen // Rheologica Acta. 1967. V. 6. P. 192-200. doi: 10.1007/BF01969173.
Schummer P. Die Stromung viskoelastischer Flussigkeiten in einem konvergenten Kanal // Rheologica Acta. 1968. V. 7. P. 271-277. doi: 10.1007/BF01985789.
Straufl K., Kinast R. Sekundurstromungseffekte beim Stromen viskoelastischer Flussigkeiten durch Keilspaltdusen // Colloid and Polymer Science. 1974. V. 252. P. 753-758. doi: 10.1007/BF01554502.
Strauss K. Die Stromung einer einfachen viskoelastischen Flussigkeit in einem konvergenten Kanal // Acta Mechanica. 1974. V. 20. P. 233-246. doi: 10.1007/BF01175926.
Straufl K. Die Stromung einer einfachen viskoelastischen Flussigkeit in einem konvergenten Kanal // Acta Mechanica. 1975. V. 21. P. 141-152. doi: 10.1007/BF01172833.
Datta A.B., Straufl K. Slow flow of a viscoelastic fluid through a contraction // Rheologica Acta. 1976. V. 15. P. 403-410. doi: 10.1007/BF01574495.
Mitsoulis E., Vlachopoulos J., Mirza F.A. Numerical simulation of entry and exit flows in slit dies // Polymer Engineering & Science. 1984. V. 24 (9). P. 707-715.
Mitsoulis E., Vlachopoulos J., Mirza F.A. A numerical study of the effect of normal stresses and elongational viscosity on entry vortex growth and extrudate swell // Polymer Engineering & Science. 1985. V. 25 (1). P. 677-689.
Munstedt H., Schwetz M., Heindl M., Schmidt M. Influence of molecular structure on secondary flow of polyolefin melts as investigated by laser-Doppler velocimetry // Rheologica Acta. 2001. V. 40. P. 384-394. doi: 10.1007/s003970000160.
Mitsoulis E., Schwetz M., Munstedt H. Entry flow of LDPE melts in a planar contraction // Journal of Non-Newtonian Fluid Mechanics. 2003. V. 111 (1). P. 41-61. doi: 10.1016/s0377-0257(03)00012-0.
Merten A., Schwetz M., Munstedt H. Laser-Doppler velocimetry - a powerful tool to investigate the flow behavior of polymer melts // International Journal of Applied Mechanics and Engineering. 2003. V. 8. P. 283-288.
Hertel D., Munstedt H. Dependence of the secondary flow of a low-density polyethylene on processing parameters as investigated by laser-Doppler velocimetry // Journal of Non-Newtonian Fluid Mechanics. 2008. V. 153 (2-3). P. 73-81. doi: 10.1016/j.jnnfm.2007.12.004.
Hertel D., Valette R., Munstedt H. Three-dimensional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE) into a slit die // Journal of Non-Newtonian Fluid Mechanics. 2008. V. 153 (2-3). P. 82-94. doi: 10.1016/ j.jnnfm.2007.11.010.
Hulsen M.A., van der Zanden J. Numerical simulation of contraction flows using a multi-mode Giesekus model // Journal of Non-Newtonian Fluid Mechanics. 1991. V. 38 (2-3). P. 183-221. doi: 10.1016/0377-0257(91)83005-0.
McLeish T.C.B., Larson R.G. Molecular constitutive equations for a class of branched polymers: the Pom-Pom polymer // Journal of Rheology. 1998. V. 42 (1). P. 81-110. doi: 10.1122/1.550933.
Bishko G.B., McLeish T.C.B., Harlen O.G., Larson R.G. Theoretical molecular rheology of branched polymers in simple and complex flows: the Pom-Pom model // Physical Review Letters. 1997. V. 79 (12). P. 2352-2355. doi: 10.1103/PhysRevLett. 79.2352.
Bishko G.B., Harlen O.G., McLeish T.C.B., Nicholson T.M. Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the ‘Pom-Pom’ model // Journal of Non-Newtonian Fluid Mechanics. 1999. V. 82 (2-3). P. 255-273. doi: 10.1016/S0377-0257(98)00165-7.
Clemeur N., Rutgers R., Debbaut B. Numerical evaluation of three dimensional effects in planar flow birefringence // Journal of Non-Newtonian Fluid Mechanics. 2004. V. 123 (2). P. 105-120. doi: 10.1016/j.jnnfm.2004.07.002.
Sirakov I., Ainser A., Haouche M., Guillet J. Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom model differential constitutive model // Journal of Non-Newtonian Fluid Mechanics. 2005. V. 126 (2). P. 163-173. doi: 10.1016/j.jnnfm. 2004.08.013.
Sousa P.C., Coelho P.M., Oliveira M.S.N., Alves M.A. Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional square-square contractions // Chemical Engineering Science. 2011. V. 66 (5). P. 998-1009. doi: 10.1016/j.ces.2010.12.011.
Griebel M., Ruttgers A. Multiscale simulations of three-dimensional viscoelastic flows in a square-square contraction // Journal of Non-Newtonian Fluid Mechanics. 2014. V. 205. P. 4163. doi: 10.1016/j.jnnfm.2014.01.004.
Wang X., Chen R., Wang M., Jin G. Validation of double convected Pom-Pom model with particle image velocimetry technique // Polymer Engineering and Science. 2015. V. 55 (8). P. 1897-1905. doi: 10.1002/pen.24030.
Clemeur N., Rutgers R.P., Debbaut B. On the evaluation of some differential formulations for the pom-pom constitutive model // Rheologica Acta. 2003. V. 42. P. 217-231. doi: 10.1007/s00397-002-0279-2.
Борзенко Е.И., Дьякова О.А. Исследование течения вязкой жидкости в т-образном канале с условиями прилипание-скольжение на твердой стенке // Вестник Томского государственного университета. Математика и механика. 2016. № 4 (42). С. 58-69. doi: 10.17223/19988621/42/6.
Борзенко Е.И., Рыльцева К.Е., Шрагер Г.Р. Численное исследование характеристик течения неньютоновской жидкости в трубе с внезапным сужением // Вестник Томского государственного университета. Математика и механика. 2019. № 58. С. 56-70. doi: 10.17223/19988621/58/5.
Кошелев К.Б., Пышнограй Г.В., Толстых М.Ю. Моделирование трехмерного течения полимерного расплава в сходящемся канале с прямоугольным сечением // Известия Российской академии наук. Механика жидкости и газа. 2015. № 3. С. 3-11.
Мерзликина Д.А., Пышнограй Г.В., Пивоконский Р., Филип П. Реологическая модель для описания вискозиметрических течений расплавов разветвленных полимеров // Инженерно-физический журнал. 2016. Т. 89, № 3. С. 643-651.
Макарова М.А., Малыгина А.С., Пышнограй Г.В., Рудаков Г.О. Моделирование реологических свойств расплавов полиэтиленов при их одноосном растяжении // Вычислительная механика сплошных сред. 2020. Т. 13, № 1. С. 73-82. doi: 10.7242/1999-6691/2020.13.1.6.
Капустина Л.В., Павлюк Ю.А., Пышнограй Г.В. Гидродинамическая структура вторичных потоков расплавов полимеров в каналах с изменением геометрии // Южно-Сибирский научный вестник. 2023. № 6 (52). С. 101-105. doi: 10.25699/SSSB.2023.52.6.012.
Гусев А.С., Макарова М.А., Пышнограй Г.В. Мезоскопическое уравнение состояния полимерных сред и описание динамических характеристик на его основе // Инженернофизический журнал. 2005. Т. 78, № 5. С. 55-61.
 Effect of rheologocal properties of polymer melts on kinematics of their flows in converging channeles | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/12

Effect of rheologocal properties of polymer melts on kinematics of their flows in converging channeles | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 98. DOI: 10.17223/19988621/98/12

Download full-text version
Counter downloads: 42