Numerical simulation of the solar radiation effect on the aerodynamics, heat exchange, and pollution transfer in a street canyon
This work investigates the influence of solar radiation on the aerodynamics, heat transfer, and pollutant dispersion in a street canyon. The main purpose of this study is to develop a mathematical model of aerodynamics, coupled heat transfer, and pollutant dispersion, as well as to examine the impact of solar heating on air quality in the pedestrian breathing zone (up to 2 m from the bottom of the canyon). The microscale model M2UE has been extended with a module for calculating coupled heat transfer between the ambient environment, building walls, and road surfaces. The study is based on the Reynolds equations and the k-ε turbulence model with buoyancy effects, considering heat transfer both inside the canyon and within the solid enclosing surfaces. A numerical experiment was conducted to simulate the impact of solar heating of the windward building wall at various solar elevation angles. The results show that solar heating of the canyon walls significantly modifies the airflow structure, leading to deteriorated air quality in the pedestrian zone. It is found that the highest pollutant concentrations occur near the windward (eastern) side of the canyon when it is partially (~50%) or fully (~100%) heated by solar radiation during the daytime, whereas higher concentrations near the leeward side are observed in the absence of solar heating or under partial heating from the setting sun.
Keywords
non-isothermal turbulent flow,
buoyancy,
solar radiation,
conjugate heat transfer,
street canyon,
pollution transferAuthors
| Starchenko Aleksandr V. | Tomsk State University | starch@math.tsu.ru |
| Danilkin Evgeniy A. | Tomsk State University | ugin@math.tsu.ru |
| Leshchinskiy Dmitriy V. | Tomsk State University | 360flip182@gmail.com |
Всего: 3
References
Старченко А.В., Нутерман Р.Б., Данилкин Е.А. Численное моделирование турбулентных течений и переноса примеси в уличных каньонах. Томск: Изд-во Том. ун-та, 2015. 252 с. doi: 10.17223/9785751123963.
Chen L., Hang J., Chen G., Liu S., Lin Y., Mattsson M., Sandberg M., Ling H. Numerical inves tigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating // Building and Environment. 2021. V. 190. Art. 107525. doi: 10.1016/j.buildenv.2020.107525.
Yang H., Chen G., Wang D., Hang J., Li Q., Wang Q. Influences of street aspect ratios and realistic solar heating on convective heat transfer and ventilation in full-scale 2D street canyons // Building and Environment. 2021. V. 204. Art. 108125. doi: 10.1016/j.buildenv.2021.108125.
Liu S., Yang X., Yang H., Gao P., Hang J., Wang Q. Numerical investigation of solar impacts on canyon vortices and its dynamical generation mechanism // Urban Climate. 2021. V. 39. Art. 100978. doi: 10.1016/j.uclim.2021.100978.
Bottillo S., De Lieto Vollaro A., Galli G., Vallati A. CFD modeling of the impact of solar radiation in a tridimensional urban canyon at different wind conditions // Solar Energy. 2014. V. 102. P. 212-222. doi: 10.1016/j.solener.2014.01.029.
Данилкин Е.А., Лещинский Д.В., Старченко А.В. Микромасштабная математическая модель неизотермического турбулентного течения и переноса пассивной газообразной примеси в уличном каньоне // Вестник Томского государственного университета. Математика и механика. 2023. № 85. С. 117-131. doi: 10.17223/19988621/85/9.
Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003. 846 с.
Бубенчиков А.М., Старченко А.В. Численные модели динамики и горения аэродисперс ных смесей в каналах. Томск: Изд-во Том. ун-та, 1998. 236 с.
Литвинцев К.Ю., Дектерев А.А., Мешкова В.Д., Филимонов С.А. Влияние излучения на формирование ветрового и температурного режимов в городской среде // Теплофизика и аэромеханика. 2023. № 4. С. 723-735.
Белов И.А., Шеленшкевич И.А., Шуб Л.И. Моделирование гидромеханических процессов в технологии изготовления полупроводниковых приборов и микросхем. Л.: Политехника, 1991. 287с.
Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computational Methods in Applied Mechanics and Engineering. 1974. V. 3 (2). P. 269-289. doi: 10.1016/0045-7825(74)90029-2.
Mahrer Y., Pielke R.A. The Effects of Topography on Sea and Land Breezes in Two-Dimensional Numerical Model // Monthly Weather Review. 1977. V. 105. P. 1151-1162.
Henkes R.A.W.M., van der Flugt F.F., Hoogendoorn C.J. Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models // Int. J. Heat Mass Transfer. 1991. V. 34. P. 1543-1557.
Starchenko A.V., Danilkin E.A., Leshchinskiy D.V. Numerical Simulation of the Distribution of Vehicle Emissions in a Street Canyon // Mathematical Models and Computer Simulations. 2023. V. 15 (3). С. 427-435.
Patankar S. Numerical heat transfer and fluid flow. New York: Hemisphere Publ. Corporation, 1980. 214 р. doi: 10.1201/9781482234213.
Van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method // Journal of Computational Physics. 1979. V. 32 (1). P. 101-136. doi: 10.1016/0021-9991(74)90019-9.
Ильин В.П. Методы неполной факторизации для решения алгебраических систем. М.: Физматлит, 1995. 288 с.
Allegrini J., Dorer V., Carmeliet J. Wind tunnel measurements of buoyant flows in street canyons // Building and Environment. 2013. V. 59. P. 315-326. doi: 10.1016/j.buildenv. 2012.08.029.
Kikumoto H., Ooka R Large-eddy simulation of pollutant dispersion in a cavity at fine grid resolutions // Building and Environment. 2018. V. 127. P. 127-137. doi: 10.1016/j.buildenv. 2017.11.005.
Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984. 831с.