Change Browser!
Change Browser
Pseudotrees and equivalent norms in the continuous.Functions spaces
A class of the pseudotrees is considered. We construct locally compact extension of a pseudotree, which also has the structure of a pseudotree. We prove that the space C0(T) of all continuous functions on a locally compact pseudotree T admits a locally uniform rotund (LUR) renorming if the related space C0(P) admits such norm for every subtree P of T and an initial segments of T are separable.
Keywords
Authors
Всего: 2
References
Molto A., Orihuela J., Troyanski S., Valdivia M. A non linear transfer technique for renorming // Pre-Publicationes del Departamento de Matematicas, Universidad de Murcia 20. 2003.
Zizler V. Locally uniformly rotund renorming and decomposition of Banach spaces // Bull. Austr. Math. Soc. 1984. V. 29. P. 259 - 265.
Kurepa D. Ensembles ordonnes et ramifies // Publ. Math. Univ. Belgrad. 1935. V. 4. P. 1 - 138.
Deville R., Godefroy G., Zizler V. Smoothness and renorming in Banach spaces. Pitman monographs 64. N.Y.: Pitman, 1993.
Кобылина М.С. Локально равномерно выпуклая норма на пространстве вида C(K), где K - линейно упорядоченный сепарабельный компакт // Вестник ТГУ. 2006. № 290. С. 64 - 65.
Haydon R.G. Trees in renorming theory // Proc. London Math. Soc. 1999. V. 78. P. 541 -584.
Burke M.R. Borel measurability of separately continuous function // Topology and Its Applications. 2003. V. 129. P. 29 - 65.
Pseudotrees and equivalent norms in the continuous.Functions spaces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2007. № 1.
Download file