Nonparametric Estimation for an AutoregressiveModel
The paper deals with the nonparametric estimation problem at a given fixed point for an autoregressive model with unknown distributed noise. Kernel estimate modifications are proposed. Asymptotic minimax and efficiency properties for proposed estimators are shown.
Download file
Counter downloads: 365
Keywords
nonparametric autoregression , minimax , kernel estimates , nonparametric autoregression , asymptotical efficiency , minimax , kernel estimates , asymptotical efficiencyAuthors
Name | Organization | |
Arkoun O. | Ouerdia.Arkoun@etu.univ-rouen.fr | |
Pergamenchtchikov S. | Serge.Pergamenchtchikov@univ-rouen.fr |
References
Moulines et al. On recursive estimation for time varying autoregressive processes // The Annals of Statistics. 2005. V. 33. No. 6. P. 2610 - 2654.
Shiryaev A.N. Probability. Second Edition. Springer, 1992.
Ibragimov I.A. and Hasminskii R.Z. Statistical Estimation: Asymptotic Theory. Berlin, New York: Springer, 1981.
Belitser E. Local minimax pointwise estimation of a multivariate density // Statisti. Nederlandica. 2000. V. 54. No. 3. P. 351 - 365.
Belitser E. Recursive estimation of a drifted autoregressive parameter // The annals of Statistics. 2000. V. 26. No. 3. P. 860 - 870.
Dahlhaus R. Maximum likelihood estimation and model selection for locally stationary processes // J. Nonparametr. Statist. 1996. V.6. No. 2 - 3. P. 171 - 191.
Helland, Inge S. Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 1982. V. 9. No. 2. P. 79 - 94.
Rebolledo R. Central limit theorems for local martingales // Z. Wahrsch. Verw. Gebiete. 1980. V. 51. No. 3. P. 269 - 286.
Dahlhaus R. On the Kullback-Leibler information divergence of locally stationary processes // Stochastic Process. Appl. 1996. V. 62. No. 1. P. 139 - 168.
Galtchouk L., Pergamenchtchikov S. Asymptotically efficient estimates for nonparametric regression models // Statist. Probab. Lett. 2006. V. 76. No. 8. P. 852 - 860.
