The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2008. № 2 (3).

The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method

The computation technology in constructing twodimensional viscous fluid dynamics problems by means of spectral element method is described in this paper. The given method allows to find solution of high accuracy on coarse unstructured grids. The universal algorithm for boundary conditions of different types was developed. Testing problems such as lid-driven cavity flow and backward facing step are presented.

Download file
Counter downloads: 346

Keywords

неструктрурированные сетки , уравнения Навье - Стокса , метод спектральных элементов , вязкая жидкость , Spectral elements method , Navier-Stokes equations , unstructured grids , viscous fluid

Authors

NameOrganizationE-mail
Bubenchikov А.М. bubenchikov@mail.tomsknet.ru
Poponin V.S. posv@mail.tomsknet.ru
Melnikova V.N. lana_21@mail.ru
Всего: 3

References

Елизарова Т.Г., Серегин В.В. Аппроксимация квазидинамических уравнений на треугольных сетках // Вестник Моск. ун-та. Серия 3. Физика. Астрономия. 2005. № 4. С. 15 - 18.
Armaly B.F., Durst F., Pereira J.C.F., and Schonung B. Experimental and theoretical investigation of backward-facing step flow // J. Fluid Mech. 1983. V. 127. No. 473.
Wan D.C., Patnaik B.S.V., and Wei G.W. Discrete Singular Convolution - Finite Subdomain Method for the Solution of Incompressible Viscous Flows // J. Computat. Phys. 2002. V. 180. P. 229 - 255.
Ozawa S. Numerical studies of steady flow in a two-dimensional square cavity at high Reynolds numbers // J. Phys. Soc. Jpn. 1975. V 38. P. 889.
Бубенчиков А.М., Фирсов Д.К., Котовщикова М.А. Численное решение плоских задач динамики вязкой жидкости методом контрольных объемов на треугольных сетках // Математическое моделирование. 2007. Т. 19. № 4.
Флетчер К. Вычислительные методы в динамике жидкостей. М.: Мир, 1991.
Helenbrook B.T. A Two-Fluid Spectral Element Method. Department of Mechanical and aeronautical engineering, 1999.
Boyd John P. Chebyshev and Fourier Spectral Methods. Second Edition. University of Michigan, 2000.
Van de Vosse F.N. Spectral Element Methods: Theory and Application, 1999.
 The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method             | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2008. № 2 (3).

The Design of Univrsal Algorithm Which Implements Inhomogeneous Dirichlet and Neumann Boundary Conditions in Spectral Element Method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2008. № 2 (3).

Download file