The Mathematical Statement andSolution of Spatial Boundary Value Problems by Means of Spectral Element Method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2008. № 3 (4).

The Mathematical Statement andSolution of Spatial Boundary Value Problems by Means of Spectral Element Method

Download file
Counter downloads: 305

Keywords

unstructured grids , viscous fluid , Poisson equation , Spectral elements method , вязкая жидкость , неструктрурированные сетки , уравнение Пуассона , метод спектральных элементов

Authors

NameOrganizationE-mail
Bubenchikov А.М. bubenchikov@ mail.tomsknet.ru
Poponin V.S. posv@mail.tomsknet.ru
Melnikova V.N. lana_21@mail.ru
Всего: 3

References

Флетчер К. Вычислительные методы в динамике жидкостей. - М.: Мир, 1991.
Helenbrook B.T. A Two-Fluid Spectral Element Method. Department of Mechanical and Aeronautical Engineering, 1999.
Boyd John P. Chebyshev and Fourier Spectral Methods. Second Edition, University of Michigan, 2000.
Van de Vosse F.N. Spectral Element Methods: Theory and Application, 1999.
 The Mathematical Statement andSolution of Spatial Boundary Value Problems by Means of Spectral Element Method             | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2008. № 3 (4).

The Mathematical Statement andSolution of Spatial Boundary Value Problems by Means of Spectral Element Method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2008. № 3 (4).

Download file