Martingales in hyperfinite universum
In article the approach tothe theory of the martingales from positions of the non-standard analysis is considered. Definitionsare entered and some important results of this theory with proofs are resulted, the part of thestated material belongs to the author. The applications of martingales are resulted in the theory ofstochastic integration.
Download file
Counter downloads: 351
Keywords
stochastic integral, martingale, internal filtration, nonanticipating stochastic process, stochastic process, Hyperfinite probability space, стохастический интеграл, мартингал, неупреждающий процесс, внутренняя фильтрация, случайный процесс, гиперконечное вероятностное пространствоAuthors
Name | Organization | |
Pchelintsev Е.A. | pchelintsev@sibmail.com |
References
Cutland N.J. Nonstandard measure theory and its applications // Bull. London Math. Soc. 1983. V. 15. Part 6. Nо. 57. P. 529 - 589.
Machover M., Hirschfeld J. Lectures on nonstandard analysis. Berlin: Springer, 1969. (Lecture Notes in Mathematics, Nо. 94.)
Luxemburg W.A.J. Nonstandard analysis: Lectures on Robinson's Theory of Infinitesimals and infinitely Large Numbers. Pasadena, 1962. Revised edition. Pasadena 1964.
Loeb P.A. Conversion from nonstandard to standard measure spaces and applications in probability theory // Trans. Amer. Math. Soc. 1975. V. 211. P. 113 - 122.
Дэвис М. Прикладной нестандартный анализ. М.: Мир, 1980. 234 с.
Robinson A. Nonstandard analysis. Princeton: Princeton University Press, 1996. 293 p.
Липцер Р.Ш., Ширяев А.Н. Теория мартингалов. М.: Наука, 1986. 512 с.
Невё Ж. Математические основы теории вероятностей. М.: Мир, 1969. 309 с.
Булинский А.В., Ширяев А.Н. Теория случайных процессов. М.: Физматлит, 2005. 402 с.
Imme Van den Berg, Victor Neves. The strength of nonstandard analysis. Wien: Springer-Verlag, 2007. 400 p.
Martin Vath. Nonstandard analysis. Basel-Boston-Berlin: Birkhauser Verlag, 2007. 252 p.
Альбеверио С., Фенстад Й., Хеэг-Крон Р., Линдстрём Т. Нестандартные методы в стоастическом анализе и математической физике. М.: Мир, 1990. 616 с.
