Hopfian abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 2(18).

Hopfian abelian groups

This paper presents the general properties ofHopfian Abelian groups, in particular, those related to direct decompositions. The complete descriptionof Hopfian divisible groups is presented; on the basis of this description, the study ofhopficity of arbitrary Abelian groups is reduced to the study of hopficity of reducedgroups. Direct sums of cyclic groups that are Hopfian groups are characterized.

Download file
Counter downloads: 303

Keywords

абелева группа, хопфова группа, делимая группа, редуцированная группа, циклическая группа, Abelian group, Hopfian group, divisible group, reduced group, cyclic group

Authors

NameOrganizationE-mail
Kaigorodov Evgeny VladimirovichNational Research Tomsk State Universitygazetaintegral@gmail.com
Всего: 1

References

Baumslag G. Hopficity and Abelian groups // Topics in Abelian Groups: Proc. New Mexico Symposium on Abelian Groups. 1962. P. 331-335.
Baumslag G. On Abelian Hopfian groups. I. // Math. Zeitschr. 1962. V. 78. No. 1. P. 53- 54.
Baumslag G., Solitar D. Some two-generator one-relator non-Hopfian groups // Bull. Amer. Math. Soc. 1962. V. 68. P. 199-201.
Corner L.S. Three examples on Hopficity in torsion-free Abelian groups // Acta Math. Acad. Sci. Hung. 1965. V. 16. No. 3-4. P. 303-310.
Yves De Cornulier. Finitely presentable, non-Hopfian groups with Kazhdan's Property (T) and infinite outer automorphism group // Proc. Amer. Math. Soc. 2005. V. 135. P. 1-8.
Higman G. A finitely generated group with an isomorphic proper factor group // J. London Math. Soc. 1951. V. 26. P. 59-61.
Irwin J.M., Takashi J. A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups // Pacif. J. Math. 1969. V. 29. No. 1. P. 151- 160.
David Meier. Non-Hopfian groups // J. London Math. Soc. 1982. V. 26. P. 265-270.
Neumann B.H. A two-generator group isomorphic to a proper factor group // J. London Math. Soc. 1950. V. 25. P. 247-248.
Takashi J., Irwin J.M. A quasi-decomposable Abelian group without proper isomorphic quotient groups and proper isomorphic subgroups, 2 // J. Fac. Sci. Hokkaido Univ. Ser. 1. 1969. V. 20. No. 4. P. 194-203.
Крылов П.А., Михалев А.В., Туганбаев А.А. Абелевы группы и их кольца эндоморфизмов. - М.: Факториал Пресс, 2006. - 512 с.
Мальцев А.И. Обобщенно нильпотентные алгебры и их присоединенные группы // Матем. сб. 1949. Т. 25. № 3. С. 347-366.
Микаелян В.Г. О конечно порождённых разрешимых нехопфовых группах // Фундамент. прикл. матем. 2009. Т. 15. № 1. С. 81-98.
Фукс Л. Бесконечные абелевы группы: в 2 т. - М.: Мир, 1974. - Т. 1. - 335 с.
Фукс Л. Бесконечные абелевы группы: в 2 т. - М.: Мир, 1977. - Т. 2. - 417 с.
 Hopfian abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 2(18).

Hopfian abelian groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 2(18).

Download file