On the inverse problem for the quasilinear partial differential equation ofthe first order | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 2(18).

On the inverse problem for the quasilinear partial differential equation ofthe first order

A method of studying the solvability of theinverse problem for a quasilinear partial differential equation of first order is proposed. Using thenonlinear method of characteristics based on the introduction of an additional argument, theproblem is reduced to the study of a nonlinear integral equation. The restored function is foundfrom a nonlinear Volterra integral equation of the first kind by use of a nonlinear integral transformation.

Download file
Counter downloads: 359

Keywords

обратная задача, квазилинейное уравнение, дополнительный аргумент, нелинейное интегральное преобразование, метод сжимающих отображений, inverse problem, quasilinear equation, additional parameter, nonlinear integral transform, method of compression mappings

Authors

NameOrganizationE-mail
Yuldashev Tursun KamaldinovichSiberian State Aerospace Universitytursunbay@rambler.ru
Всего: 1

References

Зайцев В.Ф., Полянин А.Д. Справочник по дифференциальным уравнениям с частными производными первого порядка. М.: Физматлит, 2003. 416 с.
Денисов А.М. Введение в теорию обратных задач. М.: МГУ, 1994. 285 с.
Романов В.Г. Обратные задачи для математической физики. М.: Наука, 1984. 264 с.
Юлдашев Т.К. Нелинейные интегральные и интегро-дифференциальные уравнения. Ош: ОшГЮИ, 2010. 107 с.
 On the inverse problem for the quasilinear partial differential equation ofthe first order | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 2(18).

On the inverse problem for the quasilinear partial differential equation ofthe first order | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 2(18).

Download file