Specific character of disk motion on the rheologicalground | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 3(19).

Specific character of disk motion on the rheologicalground

This paper proposes a new mathematical model of disk motion onthe rheological ground on the basis of Kelvins model. A system of differential equations of thedisk motion is derived in the form of modified Chaplygin equations involving generalizedrheological response force as well as nonholonomic constraints equations. The instability of undisturbedmotion is studied by equations of the first approximation. It is shown that the rectilinearmotion of the disk and spinning around a vertical diameter are unstable with respect to the nutationangle ƒ.

Download file
Counter downloads: 342

Keywords

связи неголономные, реологическое основание, кривая релаксации, годограф Михайлова, nonholonomic connections, rheological ground, relaxation curve, Mikhailov hodograph

Authors

NameOrganizationE-mail
Pavlov Georgiy VasilevichSamara State University of Architecture and Civil Engineeringsenitskiy@mail.ru
Kalmova Maria AleksandrovnaSamara State University of Architecture and Civil EngineeringKalmova@inbox.ru
Всего: 2

References

Василенко Н.В. Теория колебаний. Киев: Высща Школа,1992. 430 с.
Павлов Г.В., Кальмова М.А. Эффект влияния полосы контакта упруго-вязкого основания на динамику диска // Вестник СамГТУ. 2009. С. 186−192.
Карапетян А.В. Устойчивость стационарных движений. М.: Эдиториал УРСС, 1998. 166 с.
Меркин Д.Р. Введение в теорию устойчивости движения. М.: Наука, 1971. 312 с.
 Specific character of disk motion on the rheologicalground | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 3(19).

Specific character of disk motion on the rheologicalground | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2012. № 3(19).

Download file