Semi-stable second-order polynomials on the varifold of rays of the A space | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 1(21).

Semi-stable second-order polynomials on the varifold of rays of the A space

Minimal riggings making it possible to impose relatively semi-stable quadratic forms with constant coefficients on the varifold of trivariate affine ray space. It has been proved that there are two such riggings, and each of them generates its own structure in cotangent bundle of the specified varifold. It is proved that in any of these cases relative semi-stable quadratic differential form on the ruled space is proportional to the form that imposes a semi-Riemannian metric on the varifold of added vectors. Stationery state groups are identified for the discovered additional structures, and one-dimensional sub-groups are specified for these groups. This work is apparently related to the works [4, 5, 6] of the second author.

Download file
Counter downloads: 456

Keywords

инвариантная квадратичная форма, подвижной репер, многообразие лучей, semi-stable quadratic form, moving frame, varifold of rays

Authors

NameOrganizationE-mail
Badyaeva Zinaida PetrovnaKuzbass State Technical Universityleemouse@mail.ru
Bukhtyak Mikhail StepanovychTomsk State Universitybukhtyakm@mail.ru
Всего: 2

References

Фиников С.П. Метод внешних форм Картана. М.-Л.: ГИТТЛ, 1948. 432 с.
Акивис М.А. Многомерная дифференциальная геометрия. Калинин: Изд-во Калининского ун-та, 1977. - 83 с.
Фиников С.П. Теория конгруэнций. М.: ГИТТЛ, 1950. 528 с.
Бухтяк М.С. Об одном шестимерном пространстве // Геом. сб. Вып. 22. Томск: Изд-во ТГУ, 1982. С. 51-61.
Бухтяк М.С. Связность Вейля и связность Леви - Чивита на четырехпараметрическом векторном поле. Томск, 1986. 34 с. Деп. в ВИНИТИ. 29.09.1986 г. № 6857 - В86.
Бухтяк М.С. Замечательные связности на четырехпараметрическом векторном поле // Геом. сб. Вып. 29. Томск: Изд-во ТГУ, 1988. С. 84-90.
 Semi-stable second-order polynomials on the varifold of rays of the A
                   space | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 1(21).

Semi-stable second-order polynomials on the varifold of rays of the A space | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 1(21).

Download full-text version
Counter downloads: 1282
Download file