Fibonacci(n) modulo sequence
We study the behavior of the Fibonacci (n) mod n sequence and pay attention to some subsequences: n runs through the set of prime numbers and the cases with n = qp, where p runs through the set of prime numbers and q is a fixed natural number. The behavior of the sequence is investigated using the Mathematica system. Some hypotheses are formulated and proved.
Download file
Counter downloads: 440
Keywords
последовательность чисел Фибоначчи, остатки от деления, сравнения, система Mathematica, Fibonacci sequence, remainders, congruence relation, MathematicaAuthors
Name | Organization | |
Zyuz'kov Valentin Mikhailovich | Tomsk State University | vmz@math.tsu.ru |
References
Wolfram S. A New Kind of Science. Wolfram Media, 2002. 1197 p.
Sloan's On-Line Encyclopedia of Integer Sequences, http://oeis.org/
Koshy T. Fibonacci and Lucas Numbers with Applications. John Wiley & Sons, Inc, 2001.
Kramer J. and V.E. Hoggatt, Jr. Special cases of Fibonacci periodicity // The Fibonacci Quarterly. 1972. 10:5 (Nov.). P. 519-522.
Воробьев Н.Н. Числа Фибоначчи. М.: Наука, 1978. 144 с.
Desmond J.E. Problem B-182 // The Fibonacci Quarterly. 1970. 20:1 (Feb.). P. 96.

Fibonacci(n) modulo sequence | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 4(24).
Download full-text version
Download file
Counter downloads: 1077