Modeling deformation of nanostructured coatings on a titanium substrate under nanoindentation
Results of modeling nanoindentation of hardened coating on a titanium substrate by movable cellular automaton method in the 3D formulation are presented. The peculiarities of the method for describing elastic--plastic behavior of the materials are described. Comparing of the modeling results with the experimental data confirms the proposed model validation.
Keywords
наноиндентирование,
моделирование,
метод подвижных клеточных автоматов,
наноструктурный титан,
упрочняющие биосовместимые покрытия,
nanoindentation,
modeling,
movable cellular automaton method,
nanostructured titanium,
hardening biocompatible coatingsAuthors
Smolin Alexey Yurievich | Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences; Tomsk State University | asmolin@ispms.tsc.ru |
Anikeeva Galina Maximovna | Tomsk State University | anikeeva@ispms.tsc.ru |
Shilko Evgenii Viktorovich | Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences; Tomsk State University | shilko@ispms.tsc.ru |
Psakhie Sergey Grigorievich | Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences; Tomsk State University; Tomsk Polytechnic University | sp@ispms.tsc.ru |
Всего: 4
References
Shtansky D.V., Kiryukhantsev-Korneev Ph.V., Bashkova I.A., et al. Multicomponent nanostructured films for various tribological applications // Int. J. Refractory Metals & Hard Materials. 2010. 28. P. 32-39.
Shtansky D.V., Gloushankova N.A., Bashkova I.A., et al. Multifunctional biocompatible nanostructured coatings for load-bearing implants // Surface and Coatings Technology. 2006. 201. P. 4111-4118.
Shtansky D.V., Levashov E.A., Glushankova N.A., et al. Structure and properties of CaO- and ZrO2-doped TiCxNy coatings for biomedical applications // Surface and Coatings Technology. 2004. 182. P. 101-111.
Левашов Е.А., Петржик М.И., Тюрина М.Я. и др. Многослойные наноструктурные тепловыделяющие покрытия. Получение и аттестация механических и трибологических свойств // Металлург. 2010. № 9. С. 66-74.
Головин И.Ю. Наноиндентирование и его возможности. М.: Машиностроение. 2009. 316 с.
Oliver W.C., Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // J. Materials Research. 1992. No. 7. P. 1564-1583.
Шугуров А.Р., Панин А.В., Оскомов К.В. Особенности определения механических характеристик тонких пленок методом наноиндентирования // ФТТ. 2008. Т. 5. Вып. 6. С. 1007-1012
Venkatesh T.A., Van Vliet K.J., Giannakopoulos A.E., Suresh S. Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction // Scripta Materialia. 2000. V. 42. No. 9. P. 833-839.
Dao M., Chollacoop N., Van Vliet K.J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation // Acta Materialia. 2001. 49. P. 3899-3918.
Bucaille J.L., Stauss S., Felder E., Michler J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters // Acta Materialia. 2003. V. 51. P. 1663-1678.
Ogasawara N., Chiba N., Chen X. Measuring the plastic properties of bulk materials by single indentation test // Scripta Materialia. 2006. V. 54. P. 65-70.
Sreeranganathan A., Gokhale A., Tamirisakandala S. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation // Scripta Materialia. 2008. V. 58. No. 2. P. 114-117.
Zimmerman J.A., Kelchner C.L., Klein P.A. et al. Surface step effects on nanoindentation // Physical Review Letters. 2001. V. 87. P. 165507-165511.
Saraev D., Miller R.E. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings // Acta Materialia. 2006. V. 54. P. 33-45.
Mei J., Li J., Ni Y., Wang H. Multiscale simulation of indentation, retraction and fracture processes of nanocontact // Nanoscale Research Letters. 2010. V. 5. P. 692-700.
Псахье С.Г., Остермайер Г.П., Дмитриев А.И. и др. Метод подвижных клеточных автоматов как новое направление дискретной вычислительной механики. I. Теоретическое описание // Физическая мезомеханика. 2000. Т. 3. № 2. С. 5-13.
Попов В.Л., Псахье С.Г. Теоретические основы моделирования упругопластических сред методом подвижных клеточных автоматов. I. Однородные среды // Физическая мезомеханика. 2001. Т. 4. № 1.С. 15-25.
Psakhie S.G., Horie Y., Ostermeyer G.-P., et al. Movable cellular automata method for simulating materials with mesostructure // Theoretical and Applied Fracture Mechanics. 2001. No. 37. P. 311-334.
Смолин А.Ю., Роман Н.В., Добрынин С.А., Псахье С.Г. О вращательном движении в методе подвижных клеточных автоматов // Физическая мезомеханика. 2009. Т. 12. № 2. С. 17-22.
Psakhie S.G., Horie Y., Shilko E.V., et al. Development of discrete element approach to modeling heterogeneous elastic-plastic materials and media // Int. J. Terraspace Science and Engineering. 2011. V. 3. No. 1. P. 93-125.
Левашов Е.А., Петржик М.И., Кирюханцев-Корнеев Ф.В. и др. Структура и механическое поведение при индентировании биосовместимых наноструктурированных титановых сплавов и покрытий // Металлург. 2012. № 5. С.79-89.
Levashov E.A., Petrzhik M.I., Shtansky D.V., et al. Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation // Materials Science and Engineering: A. 2013. V. 570. P. 51-62.
Cundall P.A. and Strack O.D.L. A discrete numerical model for granular assemblies // Geotechnique. 1979. V. 29. No. 1. P. 47-65.
Jing L. and Stephansson O. Fundamentals of Discrete Element Method for Rock Engineering: Theory and Applications. Oxford: Elsevier, 2007. 562 p.
Sibille L., NicotF., Donze F.V., andDarve F. Material instability in granular assemblies from fundamentally different models // Int. J. Numerical and Analytical Methods in Geomechanics 2007. V. 31. No. 3. P. 457-481.
Martin C.L. and Bouvard D. Study of the cold compaction of composite powders by the discrete element method // Acta Materialia. 2003. V. 51. No. 2. P. 373-386.
Potyondy D.O. and Cundall P.A. A bonded-particle model for rock // Int. J. Rock Mechanics and Mining Sciences. 2004. V. 41. No. 8. P. 1329-1364.
Daw M.S., Foiles S.M., andBaskes M.I. The embedded-atom method: A review of theory and applications // Materials Science Reports. 1993. V. 9. No. 7-8. P. 251-310.
Псахье С.Г., Смолин А.Ю., Стефанов Ю.П. и др. Моделирование поведения сложных сред на основе комбинированного дискретно-континуального подхода // Физическая мезомеханика. 2003. Т. 6. № 6. С. 11-21.
Wilkins M.L. Computer Simulation of Dynamic Phenomena. Berlin: Springer-Verlag, 1999. 246 p.
Уилкинс М.Л. Расчет упругопластических течений / Вычислительные методы в гидродинамике. М.: Мир, 1967. С. 212-263,
Psakhie S.G., Smolin A.Yu., Shilko E.V., et al. Modeling nanoindentation of TiCCaPON coating on Ti substrate using movable cellular automaton method // Computational Materials Science. 2013. (в печати, http://dx.doi.org/10.1016/j.commatsci.2013.03.006)
Muliana A., Steward R., Haj-ali R.M., and Saxena A. Artificial neural network and finite element modeling of nanoindentation tests // Metallurgical and Materials Transactions A. 2002. 33A. P. 1939-1948.
Feng Z.-Q., Zei M., and Joli P. An elasto-plastic contact model applied to nanoindentation // Computational Materials Science. 2007. V. 38. P. 807-813.