Continuity of convex functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 5(25).

Continuity of convex functions

In this paper, we consider the set V(K) of all convex real-valued functions defined on convex compacts Kс M and find conditions under which all functions fe V(K) are scattered continuous. It is shown that there exist functions fe V(K) that are not Borel, and, for any ordinal а<ю , there are functions fe V(K) that exactly belong to the а th Baire class.

Download file
Counter downloads: 378

Keywords

compact, ordinals, Borel sets, extreme points, scattered continuous functions, convex function, компакт, ординалы, борелевские множества, крайние точки, разреженно непрерывная функция, выпуклая функция

Authors

NameOrganizationE-mail
Polukhina Anastasiya Valer'evnaTomsk State Universityspongik@yandex.ru
Khmyleva Tatiana EvgenievnaTomsk State UniversityTEX2150@yandex.ru
Всего: 2

References

Куратовский К. Топология. Том 1. М.: Мир, 1966. 594 с.
Фелпс Р. Лекции о теоремах Шоке: пер. с англ. М.: Мир, 1968. 112 с.
Половинкин Е.С., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа М.: ФИЗМАТЛИТ, 2004. 416 с.
Taras Banakh and Bogdan Bokalo. On scatteredly continuous maps between topological spaces // Topology and its Applications 157, 2010.
Arkhangelskii A., Bokalo B. Tangency of topologies and tangential properties of topological spaces // Topology. 1992. V. 54. P. 160-185.
 Continuity of convex functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. №  5(25).

Continuity of convex functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 5(25).

Download full-text version
Counter downloads: 1213