On homeomorphisms of spaces х[1,а] with the Sorgenfrey topology
In this paper, a topological classification of spaces I х [1,а] is presented. Here, а is an arbitrary ordinal and the semi-interval I = (0,1] is equipped with the Sorgenfrey topology. It is proved that the space I х [1,а] is homeomorphic to the space I х [1,P] if and only if а<р< а - ю .
Download file
Counter downloads: 315
Keywords
interval of ordinals, linear homeomorphisms, continuous functions, line of Sorgenfrey, отрезок ординалов, линейные гомеоморфизмы, непрерывные функции, прямая ЗоргенфреяAuthors
Name | Organization | |
Trofimenko Nadezhda Nikolaevna | Tomsk State University | Trofimenko@sibmail.com |
Khmyleva Tatiana Evgenievna | Tomsk State University | TEX2150@yandex.ru |
References
Куратовский К.,Мостовский А. Теория множеств. М.: Мир, 1970. 416 с.
Burke D.K., Moore J.T. Subspaces of the Sorgenfrey line // Topology and Its Applications. 1988. V. 90. P. 57-68.
![On homeomorphisms of spaces
х[1,а] with the Sorgenfrey topology | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 5(25).](/uploads/journal_cover/mathematics.jpg)
On homeomorphisms of spaces х[1,а] with the Sorgenfrey topology | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2013. № 5(25).
Download full-text version
Counter downloads: 1213