Modeling mathematics tests | Open and distance education. 2016. № 3(63).

Modeling mathematics tests

The test on mathematics developed by an original technique is used for an assessment of level and structure of knowledge of university students. The author's computer program generates individual versions of a test for each student. The teacher can offer test tasks with open or closed forms. In the course of testing one group was performing a test with tasks of the open form, and two other groups - with tasks of the closed form with a list of five response selection. Based on the analysis of test results of three groups of examinees the statistical characteristics of the test are studied. Test scores of students have normal distribution, the test has a high differentiating ability, it can be used as a standard-based test, that makes it possible to separate students with different levels of knowledge. The reasons of differences in test results with open or closed form of test tasks are investigated. The relative simplicity of closed tasks in comparison with open tasks is connected with both possibilities of guessing the answer, and self-detection of error in the task when the response received does not match any answer in the list of options. The testing results enabled to construct the scales of task complexity for each group of examinees. The hypothesis of maintaining order in the scale of task complexity for the tests in the open and closed forms and for students with different levels of knowledge was checked and confirmed. The patterns of student knowledge constructed due to the test results are studied. In the case of a dichotomous assessment of assignments (0 - the task is solved incorrectly, 1 - the task is solved correctly) the pattern is a set of ones and zeros, that student receives for performed test tasks. Investigation of patterns makes it possible to estimate the degree of ordering of students’ knowledge and helps to identify the students, who has studied the material fragmentary or violated the test rules (tips, cheating, etc.). Each pattern is associated with regularity - a number which characterizes the degree of correctness of the pattern. It was found that in all groups the pattern of students’ regularities takes values ranging from 0 to 0,4, that indicates the correct structure of the knowledge of the examinees. The regularity of distribution and its statistical characteristics are studied.

Download file
Counter downloads: 269

Keywords

тест, задания открытого и закрытого типа, тестовый балл, сложность задания, профиль испытуемого, test, open and closed forms of tasks, test score, task complexity, examinee’s pattern

Authors

NameOrganizationE-mail
Osipov Yu.V.National Research Moscow State University of Civil Engineeringyuri-osipov@mail.ru
Safina G.L.National Research Moscow State University of Civil Engineeringminkinag@mail.ru
Vetuhnovskii F.Ya.National Research Moscow State University of Civil Engineeringvetfel@mail.ru
Всего: 3

References

Fisher W.P. The Central Theoretical Problem of the Social Sciences // Rasch Measurement Transactions. - 2014. - Vol. 28:2. - P. 1464-1466.
Kenneth D.R. Measuring Liberal / Conservative Voting Tendencies among U.S. Senators // Rasch Measurement Transactions. - 2012. - Vol. 26:2. - P. 1366-1367.
Reeve B.B. Item response theory modeling in heart outcomes measurement // Expert Review of Pharmacoeconomics and Outcomes Research. - 2003. - Vol. 3(2). - P. 131-145.
Bartram D. The development of standards for the use of psychogical tests in occupational settings: The competence approach // The Psychologist. - 1995. - Vol. 5. - P. 219-223.
Baayen R.H., Davidson D.J., Bates D.M. Mixed-effects modeling with crossed random effects for subjects and items // Journal of Memory and Language. - 2008. - Vol. 59, is. 4. - P. 390-412.
Беспалько В. Быть или не быть тестам в образовании? // Педагогические измерения. - 2012. - № 1. - С. 17-41.
Muniz J., Bartram D. Improving International Tests and Testing // European Psychologist. - 2007. - Vol. 12(3). - P. 206-219.
Bartram D. The development of international guidelines on test use: the International Test Commission Project // lnternational Journal of Testing. - 2001. - Vol. 1. - P. 33-53.
Андриенко А.В. Современая практика использования тестирования в России и за рубежом // Открытое и дистанционное образование. - 2013. - № 2 (50). - С. 78-83.
Артищева Е.К. Об инструментарии педагогической диагностики в учебном процессе вуза // Вестник Российского государственного университета им. И. Канта. - Калининград: Изд-во РГУ им. И. Канта, 2007. - Вып. 4. - С. 27-34.
Кокшарова Е.А. Педагогическая экспертная система как средство оценки качества обучающих тестов // Вестник Челябинского государственного педагогического университета. - Челябинск, 2008. - № 12. - С. 79-86.
Аванесов В.С. Форма тестовых заданий. - М.: Центр тестирования, 2005. - 156 с.
Челышкова М.Б. Теория и практика конструирования педагогических тестов. - М.: Логос, 2002.
Майоров А.Н. Теория и практика создания тестов для системы образования. - М.: Интеллект-центр, 2001. - 296 с.
Кузьмина Л.И., Осипов Ю.В. О тестировании студентов по «школьной» математике // Качество. Инновации. Образование. - 2014. - № 2. - С. 9-13.
Кузьмина Л.И., Осипов Ю.В. Новые технологии преподавания и «старые» дисциплины // Качество. Инновации. Образование. - 2013. - № 12. - С. 3-7.
Duncan K.A., MacEachern S.N. Nonparametric Bayesian modelling for item response // Statistical Modelling. - 2008. - Vol. 8, № 1. - P. 41-66.
Liang L., Browne M.W. A Quasi-Parametric Method for Fitting Flexible Item Response Functions // Journal of Educational and Behavioral Statistics. - 2015. - Vol. 40. - P. 5-34.
Fujimoto K.A., Karabatsos G. Dependent Dirichlet Process Rating Model Applied // Psychological Measurement. - 2014. - Vol. 38. - P. 217-228.
Захаров А.А. Количественные и структурные характеристики комплексных тестовых композиций, сформированных на основе бинома Ньютона // Вестник Саратовского государственного технического университета. - 2004. - № 1. - С. 19-24.
Кирьяков Б.С. Статистическая модель многократного тестирования учащихся // Вестник Рязанского государственного университета им. С.А. Есенина. - 2008. - № 1/18. - С. 3-23.
Карнаухов В.М. Статистическое моделирование интернет-экзамена, проводимого в рамках аттестации вуза // Открытое и дистанционное образование. - 2014. - № 1 (53). - С. 60-68.
Сафина Г.Л., Осипов Ю.В., Керимова Д.Х., Красовская И.А. Полуавтоматическая система тестирования по математике // Открытое и дистанционное образование. - 2015. - № 2 (58). - С. 56-62.
Ким В.С. Тестирование учебных достижений. - Уссурийск: УГПИ, 2007. - 214 с.
Ким В.С. Коррекция тестовых баллов на угадывание // Педагогические измерения. - 2006. - № 4. - С. 47-55.
Кромер В.В. Еще раз о коррекции тестовых баллов // Педагогические измерения. - 2007. - № 1. - С. 89-94.
Кузьмина Л.И., Осипов Ю.В. Коррекция тестовых баллов с учетом отказов от угадывания // Alma-mater (Вестник высшей школы). - 2014. - № 12. - С. 85-91.
Gutman L. A basis for analyzing test-retest reliability // Psychometrica. - 1945. - Vol. 10. - P. 255-282.
Linacre J.M. Disconnected Subsets, Guttman Patterns and Data Connectivity // Rasch Measurement Transactions. - 2013. - Vol. 27:2. - P. 1415-1457.
 Modeling mathematics tests | Open and distance education. 2016. № 3(63).

Modeling mathematics tests | Open and distance education. 2016. № 3(63).

Download full-text version
Counter downloads: 1374