Compound poisson approximation for the distribution of the number of monotone tuples in random sequence | Applied Discrete Mathematics. Supplement. 2014. № 7.

Compound poisson approximation for the distribution of the number of monotone tuples in random sequence

The distribution of the number of monotone tuples in the sequence of independent uniformly distributed random variables taking values in the set {0,..., N - 1} is considered. By means of the Stein method, an estimate for the variation distance between the distribution of the number of monotone tuples and compound Poisson distribution are constructed. As a corollary of this result, the limit theorem for the number of monotone tuples is proved. The approximating distribution in it is the distribution of the sum of Poisson number of independent random variables with geometric distribution.

Download file
Counter downloads: 310

Keywords

монотонные цепочки, оценка расстояния по вариации сложной пуассоновской аппроксимации, сложное пуассоновское распределение, метод Стейна, monotone tuples, estimate for the variation distance of the compound Poisson approximation, compound Poisson distribution, Stein method

Authors

NameOrganizationE-mail
Minakov A. A.minak-ski@yandex.ru
Всего: 1

References

Wolfowitz J. Asymptotics distribution of runs up and down // Ann. Math. Statist. 1944. V. 15. P. 163-172.
David F. N. and Barton D. E. Combinatorial Chance. Hafner Publishing Co., New York, 1962.
Pittel B. G. Limiting behavior of a process of runs // Ann. Probab. 1981. V. 9. No. 1. P. 119-129.
Chryssaphinou O., Papastavridis S., and Vaggelatou E. Poisson approximation for the non-overlapping appearances of several words in Markov chains // Combinatorics, Probability and Computing. 2001. V. 10. No. 4. P. 293-308.
Меженная Н. М. Многомерная нормальная теорема для числа монотонных серий заданной длины в равновероятной случайной последовательности // Обозрение прикладной и промышленной математики. 2007. Т. 14. Вып.3. С. 503-505.
Roos V. Stein's method for compound Poisson approximation: The local approach // Ann. Appl. Probab. 1994. V. 4. No. 4. P. 1177-1187.
Barbour A. D., Chen L. H. Y., and Loh W.-L. Compound Poisson approximation for nonnegative random variables via Stein's method // Ann. Appl. Probab. 1992. V. 20. No. 4. P. 1843-1866.
 Compound poisson approximation for the distribution of the number of monotone tuples in random sequence | Applied Discrete Mathematics. Supplement. 2014. № 7.

Compound poisson approximation for the distribution of the number of monotone tuples in random sequence | Applied Discrete Mathematics. Supplement. 2014. № 7.