Vectorial boolean functions on distance one from apn functions | Applied Discrete Mathematics. Supplement. 2014. № 7.

Vectorial boolean functions on distance one from apn functions

The metric properties of the class of vectorial Boolean functions are studied. A vectorial Boolean function F in n variables is called a differential 8-uniform function if the equation F(x) ф F(x ф а) = b has at most 8 solutions for any vectors а, b, where а = 0. In particular, if it is true for 8 = 2, then the function f is called APN. The distance between vectorial Boolean functions F and G is the cardinality of the set {x £ Zn : F(x) = G(x)}. It is proved that there are only differential 4-uniform functions which are on the distance 1 from an APN function.

Download file
Counter downloads: 292

Keywords

векторная булева функция, дифференциально 8-равномерная функция, APN-функция, vectorial Boolean function, differentially 8-uniform function, APN function

Authors

NameOrganizationE-mail
Shushuev G.I.g.shushuev@gmail.com
Всего: 1

References

Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся на минимальном расстоянии друг от друга // Прикладная дискретная математика. 2009. №4. С. 5-20.
Коломеец Н. А. Перечисление бент-функций на минимальном расстоянии от квадратичной бент-функции // Дискретн. анализ и исслед. операций. 2012. Т. 19. №1. С. 41-58.
Nyberg K. Differentially uniform mappings for cryptography // LNCS. 1994. V. 765. P. 55-64.
 Vectorial boolean functions on distance one from apn functions | Applied Discrete Mathematics. Supplement. 2014. № 7.

Vectorial boolean functions on distance one from apn functions | Applied Discrete Mathematics. Supplement. 2014. № 7.