Intensionality of the Godel’s Second Incompleteness Theorem | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2017. № 40. DOI: 10.17223/1998863Х/40/10

Intensionality of the Godel’s Second Incompleteness Theorem

The difference between the First and Second Godel’ s theorem is discussed in perspective of possible rehabilitation of the Hilbert Program. The essence of the difference lies in the fact that if the First theorem is extensional, then the Second theorem is intensional. The formalization of the consistency concept used in the proof of the Second Theorem is reconsidered, particularly, the other ways of expressing the consistency property that are not subject to this theorem. In this paper, we investigate what can be considered a formal expression of a meaningful concept of consistency. The formalization of the consistency concept, used in the proof of the Second Theorem, is contested with the presentation of other ways of expressing the consistency property, for which the second theorem does not hold. It is investigated what can be considered a formal expression of the concept of consistency.

Download file
Counter downloads: 207

Keywords

proof, consistency, self-reference, Godel’s theorem, доказательство, intensionality, непротиворечивость, самореференция, теорема Геделя, интенсиональность

Authors

NameOrganizationE-mail
Tselishchev Vitaly V.Institute of Philosophy and Law, Siberian Division, Russian Academy of Scienceleitval@gmail.com
Всего: 1

References

Mostowski A. Sentences Undecidable in Formalized Arithmetic: An Exposition of Theory of Kurt Godel. Amsterdam: North-Holland Publishing Co, 1952.
Smith P. An Introduction to Godel’s Theorems. Second Edition. Cambridge: Cambridge University Press, 2013.
Henkin L. Problem // Journal of Symbolic Logic. 1952. Vol. 17.
Godel K. Diskussion zur Grundlegung der Mathematik // Erkenntnis. Bd. 2. 1931-32. S. 147-151.
Kreisel G. Godel’s Excursion into Intuitionistic Logic // Godel Remembered / ed. P. Weingartner, L. Schmetterer. Napoli: Bibliopolis, 1987. P. 65-179.
George A., Velleman D. Philosophies of Mathematics. Oxford: Blackwell, 2002.
Buldt B. On Fixed Points, Diagonalization, and Self-Reference // Von Rang and Namen. Essays in Honour of Wolfgang Spohn / eds. Freitag W. et al. Munster: Mentis, 2016.
Sereny G. How do We Know that the Godel Sentence of a Consistent Theory is True? // Philosophia Mathematica (III). 2001. Vol. 19. P. 47-73.
Kreisel G. Mathematical Logic // Lectures on Modern Mathematics 111 / ed. T.L. Saaty. N.Y.: Wiley, 1965.
Halbach V., Visser A. Self-Reference in Arithmetic I // The Review of Symbolic Logic. 2014. Vol. 7, №. 4. P. 671-691.
Kreisel G. On the Problem of Henkin // Proceedings of Netherland Academy of Science. 1953. Vol. 56. P. 405-406.
Auerbach D. Intensionality and the Godel Theorem // Philosophical Studies. 1985. Vol. 48. P. 337-351.
Detlefsen M. On Interpreting Godel’s Second Incompleteness Theorem // Journal of Philosophical Logic. 1979. Vol. 8. P. 297-315.
Castonguay C. Meaning and Existence in Mathematics. Springer, 1972.
Curtis F. The Autonomy of Mathematical Knowledge: Hilbert's Program Revisited, Cambridge: Cambridge University Press, 2009.
Крайзель Г. Биография Курта Геделя. М.: Институт компьютерных исследований, 2003.
Feferman S. Arithmetization of Metamathematics in a General Setting // Fundamenta Mathematicae. 1960. Vol. 49. P. 35-92.
Smorynski C. The Development of the Self-Reference: Lob’s Theorem // Perspectives on the History of Mathematical Logic / ed. T. Drucker. Berlin: Birkhauser, 1991. P. 110-133.
Smorynski C. Review: Peter Smith. An Introduction to Godel’s Theorem. Cambridge: Cambridge University Press, 2007 // Philosophia Mathematica. 2010. Vol. 18, № 1. P. 122-127.
Гильберт Д., Бернайс П. Основания математики. Т. 2: Теория доказательств. М.: Наука, 1979.
 Intensionality of the Godel’s Second Incompleteness Theorem | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2017. № 40. DOI:  10.17223/1998863Х/40/10

Intensionality of the Godel’s Second Incompleteness Theorem | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2017. № 40. DOI: 10.17223/1998863Х/40/10

Download full-text version
Counter downloads: 3192