Godel's incompleteness theorems do not disrupt Hilbert’s program | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2017. № 40. DOI: 10.17223/1998863Х/40/29

Godel's incompleteness theorems do not disrupt Hilbert’s program

We look at argumentation against realizability of Hilbert's program based on Godel's incompleteness theorems. It is shown that such argumentation based on the second incompleteness theorem is incorrect from the outset, since it necessarily leads to absurd conclusions. The impossibility of a finite proof of the first incompleteness theorem is proved, which implies the non-legitimacy of the argument against the Hilbert’s program based on this theorem. As a result, the textbook proposition, according to which Godel's incompleteness theorems serve as decisive arguments against feasibility of Hilbert’s finitistic program is refuted.

Download file
Counter downloads: 180

Keywords

программа Гильберта, тезис фон Неймана, вторая теорема Гёделя о неполноте, первая теорема Гёделя о неполноте, финитное доказательство, Hilbert’s program, von Neumann’s thesis, Godel's second incompleteness theorem, Godel's first incompleteness theorem, finitary proof

Authors

NameOrganizationE-mail
Bessonov Alexandr V.Novosibirsk State University; Institute of Philosophy and Low, Siberian Branch of Russian Academy of Sciencestrt@academ.org
Всего: 1

References

Клини С. Введение в метаматематику / пер. с англ. А.С. Есенин-Вольпин. М.: Изд-во иностранной литературы, 1957.
Detlefsen M. Formalism // S. Shapiro (ed.) The Oxford Handbook of Philosophy of Mathematics and Logic. New York: Oxford University Press. 2005. P. 236-317.
Бессонов А.В. К интерпретации теорем Гёделя о неполноте арифметики // Вестник Томского ун-та. Философия. Социология. Политология. 2011. № 4. C. 177-189.
Gentzen G. Die Widerspruchsfreiheit der reinen Zahlentheorie // Mathematische Annalen. 1936. Bd. 112. S. 493-565.
In Memoriam: Georg Kreisel // The Bulletin of Symbolic Logic. 2016. Vol. 22, No. 2. P. 298299.
Zach R. Hilbert’s Program Then and Now // D. Jacquette (ed.). Handbook of Philosophy of Science. Vol. 5: Philosophy of Logic. Amsterdam: Elsevier, 2006. P. 411-447.
Ершов Ю.Л., Целищев В.В. Алгоритмы и вычислимость в человеческом познании. Новосибирск: Изд-во СО РАН, 2012.
Godel K. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I // Monatshefte fur Mathematik und Physik. 1931. Bd. 38. S. 173-198.
Сморинский К. Теоремы о неполноте // Справочная книга по математической логике. Т. IV: Теория доказательств и конструктивная математика. М.: Наука, 1983. С. 9-53.
Bessonov A.V. Godel's second incompleteness theorem cannot be used as an argument against Hilbert's program // Logic Colloquium 2017, Programme and abstracts (Stockholm, August 14-20, 2017). Stockholm, 2017. P. 86-87.
Бессонов А.В. О двух неверных догмах, связанных со второй теоремой Гёделя о неполноте. I // Философия науки. 2014. № 4(63). C. 12-31.
Zach R. Hilbert’s program // E.N. Zalta (ed.). The Stanford Encyclopedia of Philosophy // URL: http://plato.stanford.edu/archives/sum2015/entries/hilbert-program/. Accessed: 2017/01/09.
Бессонов А.В. О двух неверных догмах, связанных со второй теоремой Гёделя о неполноте. II // Философия науки. 2016. № 2(69). C. 42-61.
 Godel's incompleteness theorems do not disrupt Hilbert’s program | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2017. № 40. DOI:  10.17223/1998863Х/40/29

Godel's incompleteness theorems do not disrupt Hilbert’s program | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2017. № 40. DOI: 10.17223/1998863Х/40/29

Download full-text version
Counter downloads: 3192