The problem of justification in formal knowledge representation
The concept of knowledge used in the computer science unlike the one widely used in today's philosophical epistemology (knowledge as justified true belief) does not involve the requirement according to which knowledge has to be justified. The neglect of this issue in the computer science originates from the philosophical logic of the 20th century where for various historical and conceptual reasons the concept of justification has been left out of the mainstream and as a consequence remained without a proper formal treatment. This situation has perceivable negative outcomes in the existing knowledge representation technologies, which makes a certain thinker become skeptical about the capacities of such technologies to convey truths or even about the truth concept itself. Recent research in the fields of proof-theoretic semantics, homotopy type theory and formal epistemology help us to outline a theoretical background for solving this problem.
Keywords
представление знаний,
обоснование,
доказательство,
теоретикодоказательная семантика,
гомотопическая теория типов,
knowledge representation,
justification,
proof,
proof-theoretic semantics,
homotopy type theoryAuthors
Kovalyov Sergei P. | Institute of Control Sciences, Russian Academy of Sciences | kovalyov@sibnet.ru |
Rodin Andrei V. | Institute of Philosophy, Russian Academy of Sciences | andrei@philomatica.org |
Всего: 2
References
Hetherington S. Gettier Problems // Internet Encyclopedia of Philosophy. URL: https://www.iep.utm.edu/gettier/ (дата обращения: 20.11.18).
Jakus G., Milutinovic V., Omerovic S., Tomazic S. Concepts, Ontologies and Knowledge Representation. Springer Science & Business Media, 2013. 67 p.
Abraham A., Grosan C. Intelligent Systems : A Modern Approach. Springer, 2011. 450 p.
Lakemeyer G., Nebel B. (Eds.) Foundations of Knowledge Representation and Reasoning. Springer, 1994. 355 p.
Fuller S. Post-Truth: Knowledge as a Power Game. CUP, 2018. 207 p.
Sundholm G. The Neglect of Epistemic Considerations in Logic: the Case of Epistemic Assumptions // Forthcoming in Topoi. Springer, 2018. URL: https://www.researchgate.net/publication/325547849_The_Neglect_of_Epistemic_Considerations_in_Logic_The_Case_of_Epistemic_Assu mptions (дата обращения: 20.11.18).
Tarski A. On the Concept of Logical Consequence // Logic, Semantics, Metamathematics. Hackett Publ., 1983. P. 409-420.
Гильберт Д., Бернайс П. Основания математики. Т. 2 : Теория доказательств. М. : Наука, 1979. 557 с.
Prawitz D. On the Idea of the General Proof Theory // Synthese. 1974. 27, № 1-2. P. 63-77.
Muggleton S., De Raedt L. Inductive Logic Programming: Theory and Methods // The Journal of Logic Programming. 1994. Vol. 19-20. P. 629-679.
Ковалёв С.П. Применение онтологий при разработке распределенных автоматизированных информационно-измерительных систем // Автометрия. 2008. Т. 44, № 2. C. 41-49.
Piesha Th., and Schroeder-Heister, P. (Eds.) Advances in Proof-Theoretic Semantics. Springer, 2015.
Васильев С.Н. и др. Интеллектное управление динамическими системами. М.: Физматлит, 2000. 352 с.
Martin-Lof P. Intuitionistic Type Theory. BIBLIOPOLIS, 1984. 91 p.
Univalent Foundations Program, Homotopy Type Theory. IAS Princeton, 2013. 473 p.
Szegedy C. et al. Intriguing Properties of Neural Networks. CoRR abs/1312.6199. 2013.