Post machine, self-reference and paradoxes
The Russell-Tarski hierarchical approach regards self-reference as a unified source of the emergence for a broad family of various semantic paradoxes. The Russell-Tarski hierarchical approach became the object of numerous critical attacks after the appearance of infinite forms of paradoxes without self-reference at the end of the 20th century. The “Infinite Liar” proposed by the American logician Stephen Yablo, in particular, is usually seen as the most powerful and convincing counterargument against the Russell-Tarski hierarchical approach. The “Infinite Liar” does not contain selfreference. Each of the sentences of this infinite sequence does not speak of itself, but always only of all the following sentences, and the logical construction of this paradox is obviously isomorphic to the hierarchical structure as such. However, the truth-values of individual sentences in the “Infinite Liar” are based on recursive functions. The “Infinite Liar” by Yablo provides analytical possibilities for constructing the original computational semantics that excludes any kind of recursion in determining the truth-value, and it demonstrates effectiveness of the basic principles of the Russell-Tarski hierarchical approach in the struggle against new forms of semantic paradoxes. The “Infinite Liar” sentences are transformed into a modified computational algorithm for the Post machine. The analysis shows that for any initial state of the tape and the starting position of the cell marking mechanism, the “Infinite Liar” algorithm is quite feasible for the Post machine. The absence of a Post machine nonresultative stop in performing the “Infinite Liar” is explained by the fact that the computational algorithm of such a program has the form of a monotonous hierarchical structure in which every arbitrary sentence Sn of an infinite sequence fixes the meaning of strictly following sentences Sn+1, Sn+2, . . ., Sn+m, which completely excludes any form of recursive definitions. The disappearance of monotony in the hierarchical structure of the so-called “Dietary Infinite Liar” almost instantly leads to a nonresultative stop of the Post machine at any initial state of the tape and the starting position of the cell marking mechanism. The difference in performing demonstrated by the Post machine when executing the programs of the “Infinite Liar” and the “Dietary Infinite Liar” is a clear evidence of the effectiveness of the basic principles of the Russell-Tarski hierarchical approach in the struggle against new forms of semantic paradoxes. That is why the ban of sentences (or their sequences) with self-reference remains the most popular of standard ways in the struggle against semantic paradoxes.
Keywords
самореференция,
иерархический подход Рассела - Тарского,
парадокс Ябло,
машина Поста,
вычислительная семантика,
self-reference,
Russell-Tarski hierarchical approach,
Yablo's paradox,
Post machine,
computational semanticsAuthors
Nekhaev Andrei V. | Tyumen State University; Omsk State Technical University; Tomsk Scientific Center, SB RAS | A_V_Nehaev@rambler.ru |
Всего: 1
References
Herzberger H.G. Paradoxes of Grounding in Semantics // The Journal of Philosophy. 1970. Vol. 67, № 6. P. 145-167. DOI: 10.2307/2023885.
Priest G. The Structure of the Paradoxes of Self-Reference // Mind. 1994. Vol. 103, № 409. P. 25-34. DOI: 10.1093/mind/103.409.25.
Jongeling T.B., Koetsier T., Wattel E. Self-Reference in Finite and Infinite Paradoxes // Logique et Analyse. 2002. Vol. 45, № 177/178. P. 15-30.
Bolander T., Hendricks V.F., Pedersen S.A. Introduction // Self-Reference. Stanford : CSLI, 2006. P. 1-25.
Ладов В.А. Решение логических парадоксов в семантически замкнутом языке // Эпистемология и философия науки. 2017. Т. 52, № 2. С. 104-119. DOI: 10.5840/eps201752233
Ладов В.А. Критический анализ иерархического подхода Рассела - Тарского к решению проблемы парадоксов // Вестник Томского государственного университета. Философия. Социология. Политология. 2018. № 44. C. 11-24. DOI: 10.17223/1998863X/44/2
Уайтхед А., Рассел Б. Основания математики: в 3 т. Самара : Самарский ун-т, 2005. Т. 1. 721 c.
Рассел Б. Математическая логика, основанная на теории типов // Введение в математическую философию : Избранные работы. Новосибирск : Сиб. унив. изд-во, 2007. С. 21-65.
Tarski A. The Establishment of Scientific Semantics // Logic, Semantics, Metamathematics : Papers from 1923 to 1938 by Alfred Tarski. Oxford : Clarendon Press, 1956. P. 401-408.
Tarski A. The Concept of Truth in Formalized Languages // Logic, Semantics, Metamathematics: Papers from 1923 to 1938 by Alfred Tarski. Oxford : Clarendon Press. 1956. P. 152-278.
Donnellan K.S. Categories, Negation, and the Liar Paradox // The Paradox of the Liar / R.L. Martin (ed.). New Haven : Yale University Press, 1970. P. 113-120.
Тарский А. Семантическая концепция истины и основания семантики // Аналитическая философия: становление и развитие (антология). М., 1998. С. 90-129.
Martin R.M. Some Comments on Truth and Designation // Analysis. 1950. Vol. 10, № 3. P. 63-67. DOI: 10.1093/analys/10.3.63.
Martin R.M. On «Analytic» // Philosophical Studies. 1952. Vol. 3, № 3. P. 42-47. DOI: 10.1007/bf02333167
Stroll A. Is Everyday Language Inconsistent? // Mind. 1954. Vol. 63, № 250. P. 219-225. DOI: 10.1093/mind/LXIII.250.219
Fitch F.B. Self-Reference in Philosophy // Mind. 1946. Vol. 55, № 219. P. 64-73. DOI: 10.1093/mind/lv.219.64
Bar-Hillel Y. Do Natural Languages Contain Paradoxes? // Studium Generale. 1966. Vol. 19. P. 391-397.
Hart W. D. On Self-Reference // The Philosophical Review. 1970. Vol. 79, № 4. P. 523-528. DOI: 10.2307/2184292
Bartlett S.J. The Idea of a Metalogic of Reference // Methodology and Science: Interdisciplinary Journal for the Empirical Study of the Foundations of Science and Their Methodology. 1976. Vol. 9, № 3. P. 85-92.
Sorensen R. A. Blindspots. Oxford: Clarendon Press, 1988. 456 p.
Патнэм Х. Реализм с человеческим лицом // Аналитическая философия: становление и развитие (антология). М., 1998. С. 466-494.
Sorensen R.A. Yablo's Paradox and Kindred Infinite Liars // Mind. 1998. Vol. 107, № 425. P. 137-155. DOI: 10.1093/mind/107.425.137
Sorensen R. A. Vagueness and Contradiction. Oxford : Clarendon Press, 2004. 208 p.
Yablo S. Paradox without Self-Reference // Analysis. 1993. Vol. 53, № 4. P. 251-252. DOI: 10.1093/analys/53.4.251
Tennant N. On Paradox without Self-Reference // Analysis. 1995. Vol. 55, № 3. P. 199-207. DOI: 10.2307/3328581
Post E.L. Finite Combinatory Processes-Formulation 1 // The Journal of Symbolic Logic. 1936. Vol. 1, № 3. P. 103-105. DOI: 10.2307/2269031
Нехаев А.В. О жуликах и ворах, или О том, содержит ли «парадокс Ябло» самореференцию? // Вестник Томского государственного университета. Философия. Социология. Политология. 2014. № 4 (28). C. 64-77.