The Concept of Proof in the Context of a Type-Theoretic Approach, III: Proofs as (Some) Types | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2020. № 57. DOI: 10.17223/1998863X/57/3

The Concept of Proof in the Context of a Type-Theoretic Approach, III: Proofs as (Some) Types

The article is the third part of a study of the epistemological features of the concept of proof within the framework of a type-theoretic approach. The article discusses issues related to the concept of proof from the point of view of the classical version of the "propositions-as-types" doctrine (the Curry-Howard correspondence) and the modern version of the "propositions-as-some-types" doctrine (a version of the Curry-Howard correspondence from the point of view of homotopy type theory). This topic was partially discussed in the previous article. This article highlights a number of important aspects and nuances, examines the current state of research, and offers some epistemological conclusions. The Curry-Howard correspondence is a non-trivial connection between logic and typed computations. The semantics for intuitionistic logic according to the BHK-interpretation is traditionally given in terms of proofs. A statement is considered true if there is an evidence for it, and is considered false if there is a refutation for it. The BHK-interpretation allows us to talk about the dynamics and statics of proof. The type-theoretic approach is a variant of the interpretation of logical concepts and, accordingly, a new look at logic. This approach allows one to discover a certain kind of a "vertical unity" of logic. An updated view of the relationship between logic, typed lambda calculus, and category theory can be termed the doctrine of "propositions-as-some-types". Propositions are considered as types of a strictly defined type, while other types are not directly considered as propositions. This point of view can be illustrated by referring, for example, to the internal logic of topos or to homotopy type theory. The "propositions-as-types" doctrine assumes that every proposition corresponds to some type, and the proofs of a given proposition correspond to terms of that type. The situation is different with the understanding of logic within the framework of the "propositions-as-some-types" doctrine. Homotopy type theory offers some clarification of the status of logic and its concepts. Terms related to a certain type are still understood as different proofs (or rather objects-proofs), and differences between them can be easily abstracted away. The level of "pure" logic in the homotopy hierarchy is limited to -1 level, and logic becomes a "special case of geometry". This reduction is possible thanks to the powerful concept of identity. At the level of "pure" logic, there are rules for introduction and elimination, and, at higher levels, at which types are understood as fundamental groupoids, there are rules for constructing mathematical structures that lie outside of "pure" logic. Type theory is a more powerful tool for analyzing the concept of proof than traditional "pure" logic, which allows one to build systems for automatic and interactive proofs, much closer to ordinary mathematical proofs and mathematical intuition.

Download file
Counter downloads: 100

Keywords

proof, logic, mathematics, type theory, Curry-Howard correspondence, homotopy type theory, intuitionism

Authors

NameOrganizationE-mail
Lamberov Lev D.Ural Federal University named after the first President of Russia B.N. Yeltsinlev.lamberov@urfu.ru
Всего: 1

References

Ламберов Л.Д. Понятие доказательства в контексте теоретико-типового подхода, I: доказательство программ // Вестник Томского государственного университета. Философия. Социология. Политология. 2018. № 6. С. 49-57.
Ламберов Л.Д. Понятие доказательства в контексте теоретико-типового подхода, II: доказательства теорем // Вестник Томского государственного университета. Философия. Социология. Политология. 2019. № 49. С. 34-41.
S0rensen M.H., Urzyczyn P. Lectures on the Curry-Howard Correspondence. Amsterdam : Elsevier, 2006. 456 p.
Troelstra A.S. History of Constructivism in the 20th Century // Set Theory, Arithmetic, and Foundations of Mathematics: Theorems, Philosophies / ed. by J. Kennedy, R. Kossak. Cambridge : Cambridge University Press, 2011. P. 150-179.
Harper R. Practical Foundations for Programming Languages. New York : Cambridge University Press, 2013. 487 p.
Martin-Lof P. Intuitionistic Type Theory. Napoli : Bibliopolis, 1984. 91 p.
Curry H. Functionality in Combinatory Logic // Proceedings of the National Academy of Sciences of the United States of America. 1934. Vol. 20, № 11. P. 584-590.
Curry H., Feys R. Combinatory Logic. Amsterdam : North-Holland, 1958. Vol. I. 417 p.
Howard W.A. The Formulae-as-Types Notion of Construction // To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism / ed. by J.P. Seldin, J.R. Hindley. Cambridge, MA : Academic Press, 1980. P. 479-490.
De Bruijn N. Automath, a Language for Mathematics // Automation and Reasoning / ed. by J. Siekmann, G. Wrightson. Berlin ; Heidelberg : Springer, 1983. Vol. 2: Classical papers on computational logic, 1967-1970. P. 159-200.
Lambek J. Deductive Systems and Categories III // Toposes, Algebraic Geometry and Logic / ed. by F.W. Lawvere. Berlin : Springer, 1972. P. 57-82.
Lambek J., Scott P.J. Introduction to Higher Order Categorical Logic. Cambridge : Cambridge University Press, 1986. 304 p.
Martin-Lof P. On the Meanings of Logical Constants and the Justifications of the Logical Laws // Nordic Journal of Philosophical Logic. 1996. Vol. 1. P. 11-60.
Rodin A. Extra-Logical Proof-Theoretic Semantics in HoTT // Proof-Theoretic Semantics: Assessment and Future Perspectives / ed. by T. Piecha, P. Schroeder-Heister. Tubingen : University of Tubingen, 2019. P. 45-46, 765-785.
Lawvere F. W. Quantifiers and sheaves // Actes du congres international des mathematiciens / ed. by M. Berger, J. Dieudonne et al. Nice : Gauthier-Villars, 1971. P. 329-334.
Ladyman J., Presnell S. Identity in Homotopy Type Theory, Part I: The Justification of Path Induction // Philosophia Mathematica. 2015. Vol. 23, № 3. P. 386-406.
Brown M, Palsberg J. Breaking Through the Normalization Barrier: a Self-Interpreter for F-omega // POPL'16: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York : Association for Computing Machinery, 2016. P. 5-17.
Rathjen M. Constructive Hilbert Program and the Limits of Martin-Lofs Type Theory // Synthese. 2005. Vol. 147, № 1. Р. 81-120.
Родин А.В. Делать и показывать // Доказательство: очевидность, достоверность и убедительность в математике / под ред. В.А. Бажанова, А.Н. Кричевца, В.А. Шапошникова. М. : Либроком, 2014. С. 222-255.
Целищев В.В., Хлебалин А.В. Формальные средства в математике и концепция понимания // Философия науки. 2020. № 2. С. 45-58.
Целищев В.В. Эпистемология математического доказательства. Новосибирск : Параллель, 2006. 212 с.
Целищев В.В. Интуиция, финитизм и рекурсивное мышление. Новосибирск : Параллель, 2007. 220 с.
Хлебалин А.В. Интерактивное доказательство: верификация и генерирование нового математического знания // Философия науки. 2020. № 1. С. 87-95.
 The Concept of Proof in the Context of a Type-Theoretic Approach, III: Proofs as (Some) Types | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2020. № 57. DOI: 10.17223/1998863X/57/3

The Concept of Proof in the Context of a Type-Theoretic Approach, III: Proofs as (Some) Types | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2020. № 57. DOI: 10.17223/1998863X/57/3

Download full-text version
Counter downloads: 975