Automated Detection of Ultra-Right Communities' Cross-Links in a Social Network
In the last decade, the coverage of social networks on the Internet by radical groups has expanded and provided militant extremists with many opportunities to recruit new adherents, build chains of interactions, and distribute illegal content. Extremist organizations engage in targeting, recruiting new members on social sites such as Facebook, VKontakte, and on radicalized web forums, including within individual communities. The main danger of online radicalization lies in its ability to quickly "infect" large online communities with destructive content. On the other hand, the Internet facilitates the study of extremist views. The use of automated or semi-automatic data collection tools based on the analysis of the website text content where extreme opinions are potentially distributed allows identifying incident planning quickly. As part of the study, we formulate an assumption on the effectiveness of using existing parsing services to automate the detection of cross-links between ultra-right community users. In this article, we consider only information that is freely available on the Internet. As an experimental site, we chose the social network VKontakte. To solve the problem, we analyzed the involvement of the community in radical far-right groups, as well as cross-links between them and student communities selected as experimental. Two student communities SC 1 and SC 2 were selected with the number of subscribers 22,000 and 1,600, respectively. The expert selected 30 radical ultra-right communities. According to the proposed algorithm, we found users who are members of a radical far-right community, as well as users who are simultaneously members of several radical far-right communities. The study showed that automated detection of cross-links between users of radical far-right communities in a social network is an achievable goal. However, various parsing services for similar requests provide results different from each other. Thus, the challenge remains to develop software tools for automating sociological research based on data retrieved from social networks.
Keywords
radicalization,
social network,
ultra-right community,
parsing,
web miningAuthors
Kuznetsov Sergey A. | Tomsk Polytechnic University | ksa11@tpu.ru |
Karpova Anna Yu. | Tomsk Polytechnic University | belts@tpu.ru |
Savelev Aleksey O. | Tomsk Polytechnic University | sava@tpu.ru |
Всего: 3
References
Overbey L.A, McKoy G., Gordon J., McKitrick S. Automated sensing and social network analysis in virtual worlds // Intelligence and Security Informatics (ISI). IEEE, Vancouver, BC, Canada, 2010. P. 179-184.
Lakomy M. Let's Play a Video Game: Jihadi Propaganda in the World of Electronic Entertainment, Studies in Conflict & Terrorism. URL: https://www.tandfonline.com /doi/full/10.1080/ 1057610X.2017.1385903?scroll=top&needAccess=true#aHR0cHM6Ly93d3cudGFuZGZvbmxpbmUu Y29tL2RvaS9wZGYvMTAuMTA4MC8xMDU3NjEwWC4yMDE3LjEzODU5MDM/bmVlZEFjY2V zcz10cnVlQEBAMA== (accessed: 30.10.2019).
Torok R. Developing an explanatory model for the process of online radicalization and terrorism // Security Informatics. 2013. Vol. 2, № 1. Р. 1-10. DOI: 10.1186/2190-8532-2-1
The New York Times. Zeynep Tufekci. How Everyday Social Media Users Become Real-World Extremists. March 10, 2018. URL: https://www.nytimes.com/2018/03/10/ opin-ion/sunday/youtube-politicsradical.html?action=click&module=RelatedLinks&pgtype= Article (accessed: 28.07.2019).
Borum R. Radicalization into Violent Extremism I: A Review of Social Science Theories // Journal of Strategic Security. 2011. Vol. 4, № 4. P. 7-36.
McCauley C., & Moskalenko S. Understanding political radicalization: The two-pyramids model // American Psychologist. 2017. Vol. 72, № 3. P. 205-216.
Neumann P.R. Old and New Terrorism. Cambridge: Polity Press, 2009.
Braniff W. Recasting and Repositioning CVE as a Grand Strategic Response to Terrorism. START (November). 2017. URL: https://www.start.umd.edu/news/recasting-and-repositioning-cve-grand-strategic-response-terrorism (accessed: 18.12.2018).
Hamm M., Spaaij R. Lone wolf terrorism in America: Using knowledge of radicalization pathways to forge prevention strategies. Final grant report to NIJ. 2015. URL: www.ncjrs.gov/pdffiles1/nij/grants/248691.pdf (accessed: 11.05.2018).
Raab J., Milward H.B. Dark Networks as Problem // Journal of Public Administration research and Theory. 2003. Vol. 13, № 4. P. 413-439.
Gerdes L.M. Illuminating Dark Networks: The Study of Clandestine Groups and Organizations (New York: Cambridge University Press, 2015);
Krebs V. Mapping Networks of Terrorist Cells // Connections. 2002. Vol. 24. P. 4352.
Fact Sheet: Far-Right Fatal Ideological Violence against Religious Institutions and Individuals in the United States: 1990-2018. URL: https://www.start.umd.edu/pubs/START_ ECDB_FarRightFatalIdeologicalViolenceAgainstReligiousTargets1990-2018_0ct2018.pdf (accessed: 05.03.2019).
Application of a Profile Similarity Methodology for Identifying Terrorist Groups that Use or Pursue CBRN Weapons. Social Computing, Behavioral-Cultural Modeling and Prediction. URL: https://link.springer.com/chapter/10.1007/978-3-642-19656-0_5 (accessed: 04.02.2019).
Kruglanski A.W., Fernandez J.R., Factor A.R., Szumowska E. Cognitive mechanisms in violent extremism. 2018. Elsevier. URL: https://doi.org/10.1016/j.cognition.2018.11.008 (accessed: 11.02.2019).
Kruglanski A. W. Violent radicalism and the psychology of prepossession. Social Psychological Bulletin, 2018. 13(4), Article e27449. URL: https://doi.org/10.32872/spb.v13i4.27449 (accessed: 25.01.2019).
Langman P. Different Types of Role Model Influence and Fame Seeking Among Mass Killers and Copycat Offenders // American Behavioral Scientist. 2018. Vol. 62, № 2. P. 210-228.
Towers S., Gomez-Lievano A., Khan M., Mubayi A., Castillo-Chavez C. Contagion in Mass Killings and School Shootings // PLoS ONE. 2015. Vol. 10, № 7. Р. e0117259. URL: https://doi.org/10.1371/journal.pone.0117259 (accessed: 25.01.2019).
Caiani M., Wagemann C. Online networks of the italian and german extreme right // Information, Communication & Society. 2009. Vol. 12:1. P. 66-109. DOI: 10.1080/13691180802158482
Southern Poverty Law Center. Hate& Extremism. URL: https://www.splcenter.org/ (accessed: 08.03.2019).
START 2017. Overview: Profiles of Individual Radicalization in the United States-Foreign Fighters. URL: https://www.start.umd.edu/ (accessed: 15.02.2019).
Project 2018-2020 «A Multi-Level Approach to the Study of Violent Extremism», Investigators: Gary LaFree, Michael Jensen, STAR (accessed: 02.03.2019).
Project 2018-2019 «Social Media Influencers: Re-domaining Fashion Industry Forecasting to Anticipate Online Extremist Radicalization», Investigators: Barnett S. Koven, Ramon F. Brena, START (accessed: 02.03.2019).
Cohen K., Johansson F., Kaati L., Mork J.C. Detecting Linguistic Markers for Radical Violence in Social Media // Terrorism and Political Violence. 2014. Vol. 26. P. 246-256.
Xie D., Xu J., Lu T.-C. Automated Classification of Extremist Twitter Accounts Using Content-Based and Network-Based Features, 2016. IEEE International Conference on Big Data. P. 25452549.
Gilani Z., Kochmar E., Crowcroft J. Classification of Twitter Accounts into Automated Agents and Human Users // Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. P. 489-496.
Pennebaker J. W., Booth R.J., Boyd R.L., Francis M.E. Linguistic Inquiry and Word Count: LIWC2015. 2015. Austin, TX: Pennebaker Conglomerates (www.LIWC.net) (accessed: 23.01.2019).
Yang M., Kiang M., Chen H., Li Y. Artificial immune system for illicit content identification in social media // J. Am. Soc. Inf. Sci. Technol. 2012. Vol. 63, № 2. P. 256-269. DOI: 10.1002/asi.21673
START Research. Where the Extremes May Touch: The Potential for Collaboration Between Islamist, Right- and Left-Wing Extremists. URL: https://www.start.umd.edu/research-projects/where-extremes-may-touch-potential-collaboration-between-islamist-right-and-left (accessed: 28.07.2019).
Borum R. Radicalization into Violent Extremism I: A Review of Social Science Theories // Journal of Strategic Security. 2011. Vol. 4, № 4. P. 7-36.
Карпова А.Ю. Механизмы индивидуальной радикализации в процессе самоорганизации молодежи // Молодежь и молодежная политика: новые смыслы и практики: сборник / под ред. С.В. Рязанцева, Т.К. Ростовской. Сер.: Демография. Социология. Экономика. М., 2019. С. 69-81.
Fu T., Abbasi A., Chen H. A focused crawler for dark web forums // J. Am. Soc. Inf. Sci. Technol. 2010. Vol. 61, № 6. P. 1213-1231.
Карпова А.Ю. Савельев А.О., Вильнин А.Д., Чайковский Д.В. Изучение процесса он-лайн-радикализации молодежи в социальных медиа (междисциплинарный подход) // Мониторинг общественного мнения: экономические и социальные перемены. 2020. № 3 (157). С. 159181.
START Fact Sheet. October 2018. Far-Right Fatal Ideological Violence against Religious Institutions and Individuals in the United States: 1990-2018. URL: https://www.start.umd.edu/pubs/ START_ECDB_ FarRightFatalIdeologicalViolenceAgainstReligiousTargets1990-2018_0ct2018.pdf
Smith A.G. How Radicalization to Terrorism Occurs in the United States: What Research Sponsored by the National Institute of Justice Tells Us. National Institute of Justice / NIJ.ojp.gov (accessed: 28.07.2019).