Computational Treatment for Life Science | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2021. № 61. DOI: 10.17223/1998863X/61/5

Computational Treatment for Life Science

According to some critics, if biology is a kind of reverse engineering for the nature, it is quite poorly prepared for the task. Thus, the issue is more likely with its ontology. Multiple hypotheses and conjectures found in papers on methodological issues claim that living systems should be viewed as complex networks of signal-transmitting paths, both neural and non-neural, that feature modularity and feedback circuits and are prone to emergent properties and increasing complexity. If so, we are on the eve of a new stage in computer models development where not only computers are used to emulate life, but life itself is construed as a complex network of interacting natural computers.

Download file
Counter downloads: 36

Keywords

ontology, computation, biology, mathematics, theory

Authors

NameOrganizationE-mail
Mikhailov Igor F.Institute of Philosophy, Russian Academy of Sciencesifmikhailov@gmail.com; http://eng.iph.ras.ru/igor_mikhailov.htm
Всего: 1

References

Lazebnik, Y. (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell. 2(3). pp. 179-182. DOI: 10.1016/S1535-6108(02)00133-2
May, R.M. (2004) Uses and Abuses of Mathematics in Biology. Science. 303(5659). pp. 790-793. DOI: 10.1126/science.1094442
Mikhailov, I.F. (2020) Social Ontology: Time to Compute. Vestnik Tomskogo gosudarstven-nogo universiteta. Filosofiya, sotsiologiya, politologiya - Tomsk State University Journal of Philosophy, Sociology and Political Science. 55. pp. 36-46. (In Russian). DOI: 10.17223/1998863X/55/5
Turing, A.M. (2004) The Chemical Basis of Morphogenesis. In: Copeland, B.J. (ed.) The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma. Vol. 15. Oxford: Oxford University Press. pp. 519-561.
Bascompte, J. (2007) Biology and mathematics. Arbor. 182(725). pp. 347-351. DOI: 10.1002/9781119663416
Hofmeyr, J.-H.S. (2017) Mathematics and biology. South African Journal of Science. 113(3/4). DOI: 10.17159/sajs.2017/a0203
Bhalla, U. S. & Iyengar, R. (1999) Emergent Properties of Networks of Biological Signaling Pathways. Science. 283(5400). pp. 381-387. DOI: 10.1126/science.283.5400.381
Csete, M.E. (2002) Reverse Engineering of Biological Complexity. Science. 295(5560). pp. 1664-1669. DOI: 10.1126/science.1069981
Bray, D. (1995) Protein molecules as computational elements in living cells. Nature. 376(6538). pp. 307-312. DOI: 10.1038/376307a0
Hesp, C., Ramstead, M., Constant, A., Badcock, P., Kirchhoff, M., Friston, K. (2019) A Multiscale View of the Emergent Complexity of Life: A Free-Energy Proposal. In: Springer Proceedings in Complexity. pp. 195-227. DOI: 10.1007/978-3-030-00075-2 7
Es, T. van (2020) Living models or life modelled? On the use of models in the free energy principle. Adaptive Behavior. DOI: 10.1177/1059712320918678
Kuchling, F., Friston, K., Georgiev, G. & Levin, M. (2019) Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Physics of Life Reviews. 33. pp. 88-108. DOI: 10.1016/j.plrev.2019.06.001
Hulme, O.J., Morville, T. & Gutkin, B. (31) Neurocomputational theories of homeostatic control. Physics of Life Reviews. 31. pp. 214-232. DOI: 10.1016/j.plrev.2019.07.005
Ramstead, M.J.D., Constant, A., Badcock, P.B. & Friston, K.J. (2019) Variational ecology and the physics of sentient systems. Physics of Life Reviews. 31. pp. 188-205. DOI: 10.1016/j.plrev.2018.12.002
Ramstead, M.J.D., Badcock, P.B. & Friston, K.J. (2018) Answering Schroedinger's question: A free-energy formulation. Physics of Life Reviews. 24. pp. 1-16. DOI: 10.1016/j.plrev.2017.09.001
Kirmayer, L.J. (2018) Ontologies of life: From thermodynamics to teleonomics: Comment on “Answering Schrodinger’s question: A free-energy formulation” by Maxwell James DEsormeau Ramstead et al. Physics of Life Reviews. 24. pp. 29-31. DOI: 10.1016/j.plrev.2017.11.022
Friston, K. (2013) Life as we know it. Journal of The Royal Society Interface. 10(86). DOI: 10.1098/rsif.2013.0475
Friston, K., Levin, M., Sengupta, B. & Pezzulo, G. (2015) Knowing one's place: a free-energy approach to pattern regulation. Journal of The Royal Society Interface. 12(105). DOI: 10.1098/rsif.2014.1383
Friston, K. J., Daunizeau, J., Kilner, J. & Kiebel, S.J. (2010) Action and behavior: A free-energy formulation. Biological Cybernetics. 102(3). pp. 227-260. DOI: 10.1007/s00422-010-0364-z
Martyushev, L.M. (2018) Living systems do not minimize free energy. Physics of Life Reviews. 24. pp. 40-41. DOI: 10.1016/j.plrev.2017.11.010
Auletta, G. (2013) Information and Metabolism in Bacterial Chemotaxis. Entropy. 15(1). pp. 311-326. DOI: 10.3390/e15010311
Kempes, C. P., Wolpert, D., Cohen, Z. & Perez-Mercader, J. (2017) The thermodynamic efficiency of computations made in cells across the range of life. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 375(2109). DOI: 10.1098/rsta.2016.0343
Marcus, G., Marblestone, A. & Dean, T. (2014) The atoms of neural computation. Science. 346(6209). pp. 551-552. DOI: 10.1126/science.1261661
 Computational Treatment for Life Science | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2021. № 61. DOI: 10.17223/1998863X/61/5

Computational Treatment for Life Science | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2021. № 61. DOI: 10.17223/1998863X/61/5

Download full-text version
Counter downloads: 1056