Predicting political views in social media: VKontakte as a case study | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2022. № 65. DOI: 10.17223/1998863X/65/21

Predicting political views in social media: VKontakte as a case study

The authors hypothesize that textual information posted on personal pages on social media reflects the political views of users to some extent. Therefore, this textual information can be used to predict political views on social media. The authors conduct experiments on textual data from user pages and test two machine learning methods to classify pages that declare different political preferences. To undertake a study, the authors collected anonymous open textual data of users of the VKontakte social network (the number of pages is 10 123). Data collection was carried out using the VKontakte Application Programming Interface (VK API). As a result of the analysis of the collected data, the authors discovered two types of textual information. The first is a text filled by the user by selecting one of several possible values (binary or categorical variables). The field “Political Views” is one of these text fields, it provides nine options for selection. The second type of text information includes information entered by the user in an arbitrary form (interests, activities, etc.). The authors trained and tested two machine learning models to predict users' political views based on the remaining text information from their pages: a) linear support vector classifier using text representations from the bag-of-words model; b) neural network using Multilingual BERT text embeddings. The results show that the models sufficiently successfully perform binary classification of users who have polar political views (for example, communists - libertarians, communists - ultra-conservatives). Nevertheless, the results for the groups of users that have close political views are significantly lower. In addition, the authors investigated the assumption that users often indicate “indifferent” political views as “moderate”. The authors classified the groups of users who declare indifferent or moderate views (the two largest categories in our dataset) and users who indicated other political preferences. The results demonstrate a sufficiently high performance for the classification of custom pages based on these two political views.

Download file
Counter downloads: 56

Keywords

social media, opinion mining, VKontakte, political polarization, machine learning

Authors

NameOrganizationE-mail
Glazkova Anna V.University of Tyumena.v.glazkova@utmn.ru
Sokova Zinaida N.University of Tyumenz.n.sokova@utmn.ru
Kruzhlnov Valery M.University of Tyumenv.m.kruzhinov@utmn.ru
Всего: 3

References

Maulana I. Social Media as Public Political Instrument // Using New Media for Citizen Engagement and Participation. 2020. P. 181-197.
McGregor S.C., Mourao R.R. Talking politics on Twitter: Gender, elections, and social networks // Social media + society. 2016. Vol. 2(3). P. 2056305116664218.
Рябченко Н.А., Малышева О.П., Гнедаш А.А. Управление политическим контентом в социальных сетях в период предвыборной кампании в эпоху постправды // Полис. Политические исследования. 2019. № 2 (2). С. 92-106.
Ceron A. et al. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens' political preferences with an application to Italy and France // New media & society. 2014. Vol. 16, № 2. P. 340-380.
Mengu S.C. et al. Political preferences of generation Y university student with regards to governance and social media: A study on March 2014 local elections // Procedia-Social and Behavioral Sciences. 2015. Vol. 174. P. 791-797.
Oliveira D., Bermejo P., dos Santos P. A. Can social media reveal the preferences of voters? A comparison between sentiment analysis and traditional opinion polls // Journal of Information Technology & Politics. 2017. Vol. 14, № 1. P. 34-45.
Volkova S., Coppersmith G., Van Durme B. Inferring user political preferences from streaming communications // Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics. 2014. P. 186-196.
Gayo-Avello D. A meta-analysis of state-of-the-art electoral prediction from Twitter data // Social Science Computer Review. 2013. Vol. 31, № 6. P. 649-679.
Huff C., Tingley D. “Who are these people?” Evaluating the demographic characteristics and political preferences of MTurk survey respondents // Research & Politics. 2015. Vol. 2, № 3. P. 2053168015604648.
Lacy S. et al. Issues and best practices in content analysis // Journalism & Mass Communication Quarterly. 2015. Vol. 4. P. 791-811.
Chang C.C., Chiu S.I., Hsu K.W. Predicting political affiliation of posts on Facebook // Proc. of the 11th International Conference on Ubiquitous Information Management and Communication. 2017. P. 1-8.
Chiu S.I., Hsu K.W. Predicting political tendency of posts on facebook // Proc. of the 2018 7th International Conference on Software and Computer Applications. 2018. P. 110-114.
David E. et al. Utilizing Facebook pages of the political parties to automatically predict the political orientation of Facebook users // Online Information Review. 2016.
Feezell J. T., Ortiz B. ‘I saw it on Facebook': an experimental analysis of political learning through social media // Information, Communication & Society. 2019. P. 1-20.
Vepsalainen T., Li, H., Suomi R. Facebook likes and public opinion: Predicting the 2015 Finnish parliamentary elections // Government Information Quarterly. 2017. Vol. 34, № 3. P. 524-532.
Hernandez-Suarez A. et al. Predicting political mood tendencies based on Twitter data // 5th Int. Workshop on Biometrics and Forensics. 2017. P. 1-6.
Makazhanov A., Rafiei D., Waqar M. Predicting political preference of Twitter users // Social Network Analysis and Mining. 2014. Vol. 4, № 1. P. 193.
Preofiuc-Pietro D. et al. Beyond binary labels: political ideology prediction of twitter users // Proc. of the 55th Annual Meeting of the Association for Computational Linguistics. 2017. P. 728-740.
Stefanov P. et al. Predicting the topical stance and political leaning of media using tweets // Proc. of the 58th Annual Meeting of the Association for Computational Linguistics. 2020. P. 527-537.
Bolsover G., Howard P. Chinese computational propaganda: automation, algorithms and the manipulation of information about Chinese politics on Twitter and Weibo // Information, communication & society. 2019. Vol. 22, № 14. P. 2063-2080.
Denemark D., Chubb A. Citizen attitudes towards China's maritime territorial disputes: traditional media and Internet usage as distinctive conduits of political views in China // Information, Communication & Society. 2016. Vol. 19, № 1. P. 59-79.
Бызов Л.Г. и др. Идеальный политик для социальной сети: подход к анализу идеологических предпочтений пользователей // Проблемы управления. 2020. Vol. 4. С. 15-26.
Kozitsin I.V. et al. Modeling Political Preferences of Russian Users Exemplified by the Social Network Vkontakte // Mathematical Models and Computer Simulations. 2020. Vol. 12. P. 185-194.
Baly R. et al. We Can Detect Your Bias: Predicting the Political Ideology of News Articles // Proc. of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020. P. 49824991.
Kinash N. et al. Analysis of large-scale networks using high performance technology (Vkontakte case study) // Creativity in Intelligent, Technologies and Data Science. 2015. Vol. 535. P. 531541.
Леденев Д.Е. Раскрытие политических предпочтений в профиле «ВКонтакте»: гендерный аспект // Психология человека и общества. 2021. № 2 (31). С. 23-41.
Забокрицкая Л.Д., Хлебников Н.А., Орешкина Т.А., Комоцкий Е.И. Возможности изучения ценностей молодежи через профиль социальной сети «ВКонтакте» // Мониторинг общественного мнения: экономические и социальные перемены. 2020. № 2 (156). С. 148-167.
Jackson J. Happy partisans and extreme political views: The impact of national versus local representation on well-being // European Journal of Political Economy. 2019. 58. P. 192-202.
Oraka E. et al. A cross-sectional examination of US gun ownership and support for gun control measures: sociodemographic, geographic, and political associations explored // Preventive medicine. 2019. 123. P. 179-184.
Pedregosa F. et al. Scikit-learn: Machine learning in Python // The Journal of machine Learning research. 2011. Vol. 12. P. 2825-2830.
Devlin J. et al. (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Glazkova A. A Comparison of Text Representation Methods for Predicting Political Views of Social Media Users // Proc. of ITIDMS-2021. 2021.
Wolf T. et al. HuggingFace's Transformers: State-of-the-art Natural Language Processing. arXiv: 1910.03771. 2019.
Paszke A. et al. Pytorch: An imperative style, high-performance deep learning library // Advances in neural information processing systems. 2019. P. 8026-8037.
Korobov M. Morphological analyzer and generator for Russian and Ukrainian languages // International Conference on Analysis of Images, Social Networks and Texts. 2015. P. 320-332.
Lemaitre G., Nogueira F., Aridas C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning // The Journal of Machine Learning Research. 2017. Vol. 18(1). P. 559-563.
 Predicting political views in social media: VKontakte as a case study | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2022. № 65. DOI: 10.17223/1998863X/65/21

Predicting political views in social media: VKontakte as a case study | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2022. № 65. DOI: 10.17223/1998863X/65/21

Download full-text version
Counter downloads: 397