Rule-following, private language, and (self-)correction practice: A case of local quaddition function | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2022. № 69. DOI: 10.17223/1998863X/69/5

Rule-following, private language, and (self-)correction practice: A case of local quaddition function

The article contains a critical analysis of the skeptical solution to the rulefollowing problem. The skeptical solution denies the existence of “superlative” R-facts that would make statements of the form “P means R by ‘+’ ” true. The role of the sources for the meaning of ‘+’ here is played by the patterns of solidarity behavior of members of some community to which P belongs. The correct use of ‘+’ would be one that is approved by the competent majority of this community, and there can be no other sense in which it would be correct or wrong. Boyd’s hypothesis denies the communal character of the ‘+’ meaning. While there are no “superlative” R-facts, there should be C-facts not about the R as the standard that P or its community follows in their practice of using ‘+’, but about whether they do it correctly. The proof of the Boyd hypothesis is based on the example of an imaginary Ω-community, whose agents use a finite set of simple symbols for the needs of their arithmetic: ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’. Each symbol denotes a subset of identical, from the Ω-community point of view, numerical values. The symbol ‘A’ is used, for example, for a subset of the natural numbers 1, 10, 19, 28, 37, 46, etc.; ‘B’ for 2, 11, 20, 29, 38, 47, etc.; ‘C’ for 3, 12, 21, 30, 39, 48, etc. The Ω-community’s arithmetic uses the only local function ⊕ whose range of values forms a finite set of mathematical propositions {α} that are true. The Ω-community’s arithmetic, like our own, is open to many skeptical challenges. Is there a fact that determines the meaning of ‘⊕’? What do agents do when they calculate with ‘⊕’ (say, solve examples ‘A⊕B = ?’, ‘C⊕E=?’, etc.)? Do they Add, Badd or Dadd? To answer them would require a “superlative” R-fact. For the calculation practice with ‘Ф’, it could be a certain R-fact that determines the only possible order for the sequence of numerals ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’ such that {a} is true. An analysis of the calculation practice using the local arithmetic function ⊕ shows that for it there are no such R-facts that would determine the only correct standard R - even if the agents in the Ω-community were trained in such calculations on a full set of cases for the application of that function. However, for such practice there are C-facts (independent in their existence from R-facts) that make it possible to distinguish between what seems to be right and what is right. The solitary agent P and the Ω-community are in the same position regarding the knowledge of C-facts. The Ω-community’ s point of view has no advantage in matters of C-facts knowledge over the solitary agent P’s point of view. The Ω-community arithmetic shows that if a solitary agent P had the suitable knowledge of C-facts about the practice of calculations with ‘⊕’, it would allow him/her to disagree with the not correct answers of other members of the community even when they would constitute an absolute majority. The author declares no conflicts of interests.

Download file
Counter downloads: 31

Keywords

Kripke-Wittgenstein paradox, semantic non-factualism, rule-following, private language argument, communitarian sceptical solution, Boyd’s hypothesis

Authors

NameOrganizationE-mail
Nekhaev Andrei V.Tomsk Scientific Center, Siberian Branch of the Russian Academy of Sciences; University of Tyumen; Omsk State Technical University
Всего: 1

References

Витгенштейн Л. Голубая и Коричневая книги: предварительные материалы к «Философским исследованиям». М. : Канон+ РООИ Реабилитация, 2022. 384 с.
Витгенштейн Л. Философские исследования // Философские работы. Ч. 1. М. : Гнозис, 1994. С. 75-319.
Крипке С. А. Витгенштейн о правилах и индивидуальном языке. М. : Канон+ РООИ Реабилитация, 2010. 256 с.
Wilson G. M. Kripke on Wittgenstein on Normativity // Midwest Studies in Philosophy. 1994. Vol. 19. P. 366-390.
Knorpp W.Communalism, Correction and Nihilistic Solitary Rule-Following Arguments // Problems of Normativity, Rules and Rule-Following / Eds. M. Araszkiewicz, P. Banas, T. Gizbert-Studnicki, K. Pleszka. New York : Springer, 2015. P. 31-46.
Inwagen P. There is No Such Thing as Addition // Midwest Studies in Philosophy. 1992. Vol. 17. P. 138-159.
Ладов В.А. Семантика Г. Фреге в современной аналитической философии // ПРАЕНМА. Проблемы визуальной семиотики. 2022. Вып. 3(33). С. 97-110.
Борисов Е.В. Контекстуальность в семантике Каплана и Катца // ПРАЕНМА. Проблемы визуальной семиотики. 2022. Вып. 3(33). С. 111-117.
Нехаев А.В. Блеск и нищета семантического платонизма // ПРАЕНМА. Проблемы визуальной семиотики. 2022. Вып. 3(33). С. 118-126.
Суровцев В.А. Реальность лингвистического значения и языковые игры // ПРАЕНМА. Проблемы визуальной семиотики. 2022. Вып. 3(33). С. 135-144.
Law S. Five Private Language Arguments // International Journal of Philosophical Studies. 2004. Vol. 12, № 2. P. 159-176.
Bain D. Private Languages and Private Theorists // The Philosophical Quarterly. 2004. Vol. 54, № 216. P. 427-434.
McDougall D.A. The Role of Philosophical Investigations 258: What is ‘the Private Language Argument’? // Analytic Philosophy. 2013. Vol. 54, № 1. P. 44-71.
Lin F.Y. Wittgenstein’s Private Language Investigation // Philosophical Investigations. 2017. Vol. 40, № 3. P. 257-281.
Wright C. Does Philosophical Investigations 258-60 Suggest a Cogent Argument against Private Language? // Rails to Infinity: Essays on Themes from Wittgenstein’s Philosophical Investigations. Cambridge, Mass.: Harvard University Press, 2001. P. 223-290.
Бейкер Г.П., Хакер П. М. С. Скептицизм, правила и язык. М. : Канон+ РООИ Реабилитация, 2008. 240 с.
Miller A. What is the Sceptical Solution? // Journal for the History of Analytical Philosophy. 2020. Vol. 8, № 2. P. 1-22.
Blackburn S. The Individual Strikes Back // Synthese. 1984. Vol. 58, № 3. P. 281-301.
McDowell J. Wittgenstein on Following a Rule // Synthese. 1984. Vol. 58, № 3. P. 325-363.
Boyd D. Semantic Non-Factualism in Kripke’s Wittgenstein // Journal for the History of Analytical Philosophy. 2017. Vol. 5, № 9. P. 1-13.
Gelman R., Gallistel C.R. The Child’s Understanding of Number. Cambridge, Mass. : Harvard University Press, 1986. 260 p.
 Rule-following, private language, and (self-)correction practice: A case of local quaddition function | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2022. № 69. DOI: 10.17223/1998863X/69/5

Rule-following, private language, and (self-)correction practice: A case of local quaddition function | Tomsk State University Journal of Philosophy, Sociology and Political Science. 2022. № 69. DOI: 10.17223/1998863X/69/5

Download full-text version
Counter downloads: 282