Покрытие из фосфата кальция, улучшающее биоактивные свойства сверхэластичных NiTi имплантатов
Покрытия из фосфата кальция зарекомендовали себя в качестве потенциального компонента имплантатов. В даном исследовании плазменное высокочастотное распыление было использовано для получения покрытия из фосфата кальция на подложке NiTi. Установлено, что напыленный слой состоит из гидроксиапатита и Р-трикальцийфосфата, а подложка содержит NiTi B2-аустенит и Ti2Ni. Тесты на смачиваемость и испытания in vitro доказывают, что полученное покрытие из фосфата кальция улучшает пролиферацию клеток. Авторы заявляют об отсутствии конфликта интересов.
Ключевые слова
никелид титана,
гидроксиапатит,
покрытие,
напыление,
биосовместимостьАвторы
Марченко Екатерина Сергеевна | Томский государственный университет | доктор физико-математических наук, доцент, заведующая лабораторией сверхэластичных биоинтерфейсов | 89138641814@mail.ru |
Байгонакова Гульшарат Аманболдыновна | Томский государственный университет | кандидат физико-математических наук, старший научный сотрудник лаборатории сверхэластичных биоинтерфейсов | gat27@mail.ru |
Дубовиков Кирилл Максимович | Томский государственный университет | аспирант | kirill_dubovikov@mail.com |
Топольницкий Евгений Богданович | Сибирский государственный медицинский университет | торакальный хирург высшей категории, доктор медицинских наук | e_topolnitskiy@mail.ru |
Всего: 4
Ссылки
Wever D.J., Veldhuizen A.G., Sanders M.M., Schakenraad J.M., van Horn J.R. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy // Biomaterials. 1997. Vol. 18. P. 1115-1120. doi: 10.1016/s0142-9612(97)00041-0.
Olier P., Barcelo F., Bechade J.L., Brachet J.C., Lefevre E., Guenin G. Effects of Impurities Content (Oxygen, Carbon, Nitrogen) on Microstructure and Phase Transformation Temperatures of Near Equiatomic TiNi Shape Memory Alloys // Journal de Physique IV (Proceedings). 1997. Vol. 7 (5). P. 143-148. doi: 10.1051/jp4:1997522.
Xu B., Wang C., Wang Q. Toward tunable shape memory effect of NiTi alloy by grain size engineering: A phase field study // Journal of Materials Science & Technology. 2023. Vol. 168. P. 276-289. doi: 10.1016/j.jmst.2022.10.089.
Xiao Y., Jiang D. Thermomechanical modeling on cyclic deformation and localization of superelastic NiTi shape memory alloy // International Journal of Solids and Structures. 2022. Vol. 250. Art. no. 111723. P. 1-13. doi: 10.1016/j.ijsolstr.2022.111723.
Ohtsu N., Yamasaki K., Taniho, H., Konaka, Y., Tate K. Pulsed anodization of TiNi alloy to form a biofunctional Ni-free oxide layer for corrosion protection and hydrophilicity // Surface and Coatings Technology. 2021. Vol. 412. Art. no. 127039. P.1-9. doi: 10.1016/j. surfcoat.2021.127039.
Shabalovskaya S.A., Anderegg J.W., Undisz A., Rettenmayr M., Rondelli G.C. Corrosion resistance, chemistry, and mechanical aspects of Nitinol surfaces formed in hydrogen peroxide solutions // Journal of Biomedical Materials Research Part B Applied Biomaterials. 2012. Vol. 100. P. 1490-1499. doi: 10.1002/jbm.b.32717.
Marchenko E.S., Baigonakova G.A., Dubovikov K.M., Yasenchuk Yu.F., Gunther S.V. Reaction synthesis of gradient coatings by annealing of three-layer Ti-Ni-Ti nanolaminate magnetron sputtered on the TiNi substrate // Surfaces and Interfaces. 2021. Vol. 24. Art. no. 101111. P. 1-11. doi: 10.1016/j.surfin.2021.101111.
Marchenko E., Yasenchuk Yu., Baigonalova G., Gunther S., Yuzhakov M., Zenkin S., Potekaev S., Dubovikov K. Phase formation during air annealing of Ti-Ni-Ti laminate // Surface and Coatings Technology. 2020. Vol. 388. Art. no. 125543. P. 1-10. doi: 10.1016/j.surfcoat.2020.125543.
Shanaghi A., Mehrjou B., Ahmadian Z., Souri A.R., Chu P.K. Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloy // Materials Science and Engineering: C. 2021. Vol. 118. Art. no. 111524. P. 1-16. doi: 10.1016/j.msec.2020.111524.
Lai Y., Cheng P., Yang C., Yen S. Electrolytic deposition of hydroxyapatite/calcium phosphate-heparin/gelatin-heparin tri-layer composites on NiTi alloy to enhance drug loading and prolong releasing for biomedical applications // Thin Solid Films. 2018. Vol. 649. P. 192-201. doi: 10.1016/j.tsf.2018.01.051.
Guo Y., Xu Z., Liu M., Zu S., Yang Y., Wang Q., Yu Z., Zhang Z., Ren L. The corrosion resistance, biocompatibility and biomineralization of the dicalcium phosphate dihydrate coating on the surface of the additively manufactured NiTi alloy // Journal of Materials Research and Technology. 2022. Vol. 17. P. 622-635. doi: 10.1016/j.jmrt.2022.01.063.
Shokri N., Safavi M.S., Etminanfar M., Walsh F.C., Khalil-Allafi J. Enhanced corrosion protection of NiTi orthopedic implants by highly crystalline hydroxyapatite deposited by spin coating: The importance of pre-treatment // Materials Chemistry and Physics. 2021. Vol. 259. Art. no. 124041. P. 1-12. doi: 10.1016/j.matchemphys.2020.124041.
Shirdar M.R., Sudin I., Taheri M.M., Keyvanfar A., Yusop M.Z.M., Kadir M.R.A. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co-Cr-based alloy // Vacuum. 2015. Vol. 122. P. 82-89. doi: 10.1016/j.vacuum.2015.09.008.
Nguyen H.Q., Deporter D.A., Pilliar R.M., Valiquette N., Yakubovich R. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants // Biomaterials. 2004. Vol. 25 (5). P. 865-876. doi: 10.1016/s0142-9612(03)00607-0.
Huang Y., He J., Gan L., Liu X., Wu Y., Wu F., Gu Z.-W. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study // Biomedical Materials. 2014. Vol. 9. Art. no. 065007. P. 1-10. doi: 10.1088/1748-6041/9/6/065007.
Surmenev R.A. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication // Surface and Coatings Technology. 2012. Vol. 206. P. 2035-2056. doi: 10.1016/j.surfcoat.2011.11.002.
Ding S.-J. Properties and immersion behavior of magnetronsputtered multi-layered hydroxyapatite/titanium composite coatings // Biomaterials. 2003. Vol. 24. P. 4233-4238. doi: 10.1016/S0142-9612(03)00315-6.
You B.C., Meng C.E., Nasir N.F.M., Tarmizi E.Z.M., Fhan K.S., Kheng E.S., Majid M.S.A., Jamir M.R.M. Dielectric and biodegradation properties of biodegradable nano-hydroxyapatite/starch bone scaffold // Journal of Materials Research and Technology. 2022. Vol. 18. P. 3215-3226. doi: 10.1016/j.jmrt.2022.04.014.
Ma G., Liu X. Y. Hydroxyapatite: Hexagonal or Monoclinic? // Crystal Growth & Design. 2009. Vol. 9. P. 2991-2994. doi: 10.1021/cg900156w.
Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration // Biomaterials Research. 2019. Vol. 23. Art. no. 4. P. 1-11. doi: 10.1186/s40824-018-0149-3.
Hallab N.J., Bundy K.J., O'Connor K., Moses R.L., Jacobs J.J. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion // Tissue Engineering. 2001. Vol. 71. P. 55-71. doi: 10.1089/107632700300003297.
Ferraris S., Cazzola M., Peretti V., Stella B., Spriano S. Zeta Potential Measurements on Solid Surfaces for in Vitro Biomaterials Testing: Surface Charge, Reactivity Upon Contact With Fluids and Protein Absorption // Frontiers in Bioengineering and Biotechnology. 2018. Vol. 6. P. 60-67. doi: 10.3389/fbioe.2018.00060.