Combinations of luminescent materials for unambiguous identification of nitrocompound vapors | Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety/Security Technologies. 2023. № 4. DOI: 10.17223/7783494/4/1

Combinations of luminescent materials for unambiguous identification of nitrocompound vapors

The paper considers the development of an approach for selection of combinations of luminescent materials that allow detection and identification of nitro compounds in the gas phase by fluorescent method. Four luminescent materials obtained by electrospinning fluorophore solutions onto permeable melamine-formaldehyde substrate were studied as sensors of nitro compound vapors. Sensory properties of materials were evaluated by their responses on exposure to saturated vapors of nitro-containing substances and interfering substances. An original gas analyzer and sensor element featuring a set of luminescent materials were used to measure luminescent signals of materials in the presence of analyte vapor. An algorithm for processing of time series of luminescence intensity is suggested, that allows to describe sensory properties of individual materials and their combinations and to select combinations for the unambiguous recognition of nitrocompounds as a class or of individual analytes. The authors declares no conflicts of interests.

Download file
Counter downloads: 5

Keywords

luminescent materials, nitroaromatic compounds, identification, combinations of materials, vapors

Authors

NameOrganizationE-mail
Chuvashov Roman D.Ural Federal Universitychuva.rd.13@gmail.com
Baranova Anna A.Ural Federal Universitya.a.baranova@urfu.ru
Khokhlov Konstantin O.Ural Federal Universityk.o.khokhlov@urfu.ru
Kvashnin Yuriy A.I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Scienceskvashnin@ios.uran.ru
Verbitskiy Egor V.I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciencesverbitsky@ios.uran.ru
Всего: 5

References

Lai D.Y., Woo Y.-T. Amino and Nitro Compounds // Hamilton & Hardy's Industrial Toxicology. Wiley, USA. doi: 10.1002/9781118834015.
Sunahara G.I., Lotufo G., Hawari J., Kuperman R.G. Ecotoxicology of Explosives. Boca Raton, USA : CRC Press, 2009. doi: 10.1201/9781420004342.
Giannoukos S., Brkic B., Taylor S., Marshall A., Verbeck G.F. Chemical Sniffing Instrumentation for Security Applications // Chemical reviews. 2016. Vol. 116 (14). P. 8146-8172. doi: 10.1021/acs.chemrev.6b00065.
Liu K., Shang C., Wang Z., Qi Y., Miao R., Liu K., Liu T., Fang Y. Non-contact identification and differentiation of illicit drugs using fluorescent films // Nature Communications. 2018. Vol. 9. Art. no. 1695. P. 1-11. doi: 10.1038/s41467-018-04119-6.
Чувашов Р.Д., Беляев Д.В., Хохлов К.О., Баранова А.А., Зен Эддин М., Мильман И.И., Вербицкий Е.В. Флуоресцентное определение паров нитробензола с использованием допированного флуорофорами полистирола // Аналитика и контроль. 2022. Т. 26, № 4. С. 284-297. doi: 10.15826/analitika.2022.26.4.005.
Chuvashov R.D., Zhilina E.F., Lugovik K.I., Baranova A.A., Khokhlov K.O., Belyaev D.V., Zen Eddin M., Rusinov G.L., Verbitskiy E.V., Charushin V.N. Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds // Chemosensors. 2023. Vol. 11 (3). Art. no. 167. P. 1-20. doi: 10.3390/chemosen-sors11030167.
Sun X., Wang Y., Lei Y. Fluorescence based explosive detection: from mechanisms to sensory materials // Chemical Society Reviews. 2015. Vol. 44. P. 8019-8061. doi: 10.1039/C5CS00496A.
Shaw P.E., Burn P.L. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes? // Physical Chemistry Chemical Physics. 2017. Vol. 19 (44). P. 29714-29730. doi: 10.1039/C7CP04602B.
Ewing R.G., Waltman M.J., Atkinson D.A., Grate J.W., Hotchkiss P.J. The vapor pressures of explosives // TrAC Trends in Analytical Chemistry. 2013. Vol. 42. P. 35-48. doi: 10.1016/j.trac.2012.09.010.
Li Z., Askim J.R., Suslick K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays // Chemical reviews. 2018. Vol. 119 (1). P. 231-292. doi: 10.1021/acs.chemrev.8b00226.
Verbitskiy E.V., Dinastiya E.M., Baranova A.A., Khokhlov K.O., Chuvashov R.D., Yakovleva Y.A., Makarova N.I., Vetrova E.N., Metelitsa A. V., Slepukhin P.A., Rusinov G.L., Chupakhin O.N., Charushin V.N. New V-shaped 2,4-di(hetero)arylpyrimidine push-pull systems: Synthesis, solvatochromism and sensitivity towards nitroaromatic compounds // Dyes and Pigments. 2018. Vol. 159. P. 3544. doi: 10.1016/j.dyepig.2018.05.075.
Verbitskiy E.V., Baranova A.A., Lugovik K.I., Shafikov M.Z., Khokhlov K.O., Cheprakova E.M., Rusinov G.L., Chupakhin O.N., Charushin V.N. Detection of nitroaromatic explosives by new D-n-A sensing fluorophores on the basis of the pyrimidine scaffold // Analytical and bioanalytical chemistry. 2016. Vol. 408. P. 4093-4101. doi: 10.1007/s00216-016-9501-4.
Venkataramana G., Sankararam S. Synthesis, Absorption, and Fluorescence-Emission Properties of 1,3,6,8-Tetraethynylpyrene and Its Derivatives // European Journal of Organic Chemistry. 2005. Vol. 19. P. 4162-4166. doi: 10.1002/ejoc.200500222.
Zen Eddin M., Zhilina E.F., Chuvashov R.D., Dubovik A.I., Mekhaev A.V., Chistyakov K.A., Baranova A.A., Khokhlov K.O., Rusinov G.L., Verbitskiy E.V., Charushin V.N. Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics // Molecules. 2022. Vol. 27 (20). Article no. 6957. P. 1-19. doi: 10.3390/molecules27206957.
Dykyj J., Svoboda J., Wilhoit R.C., Frenkel M., Hall K.R. Vapor Pressure of Chemicals // Landolt-Bornstein - Group IV Physical Chemistry Volume 20B & 20C. Springer-Verlag, Germany. doi: 10.1007/b71424, 10.1007/b88812.
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. N.Y. : Springer, 2009. doi: 10.1007/978-0-387-84858-7.
Ali M.A., Shoaee S., Fan S., Burn P.L., Gentle I.R., Meredith P., Shaw P.E. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing // ChemPhysChem. 2016. Vol. 17 (21). P. 3350-3353. doi: 10.1002/cphc.201600767.
Xu F., Nishida T., Shinohara K., Peng L., Takezaki M., Kamada T., Akashi H., Nakamura H., Sugiyama K., Ohta K., Orita A., Otera J. Trimethylsilyl Group Assisted Stimuli Response: Self-Assembly of 1,3,6,8-Tetrakis((trimethysilyl)ethynyl)pyrene // Organometallics. 2017. Vol. 36. P. 556-563. doi: 10.1021/acs.organomet.6b007811.
Verbitskiy E.V., Kvashnin Y.A., Baranova A.A., Khokhlov K.O., Chuvashov R.D., Schapov I.E., Yakovleva Y.A., Zhilina E.F., Shchepochkin A.V., Makarova N.I., Vetrova E.V., Metelitsa A.V., Rusinov G.L., Chupakhin O.N., Charushin V.N. Synthesis and characterization of linear 1,4-diazine-triphenylamine-based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines // Dyes and Pigments. 2020. Vol. 178. Art. no. 108344. P. 1-10. doi: 10.1016/j.dyepig.2020.108344.
 Combinations of luminescent materials for unambiguous identification of nitrocompound vapors | Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety/Security Technologies. 2023. № 4. DOI: 10.17223/7783494/4/1

Combinations of luminescent materials for unambiguous identification of nitrocompound vapors | Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety/Security Technologies. 2023. № 4. DOI: 10.17223/7783494/4/1

Download full-text version
Counter downloads: 82