Model of a non-destructive testing method for ceramic material based on hydroxyapatite with carbon nanotube additives | Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety/Security Technologies. 2024. № 8. DOI: 10.17223/29491665/8/8

Model of a non-destructive testing method for ceramic material based on hydroxyapatite with carbon nanotube additives

The use of materials with improved physical and mechanical properties for biomedical applications that can function effectively under extreme loads, such as radiation and chemical exposure, will significantly reduce injuries and prolong the quality of life of employees. At the same time, the development of such materials is labor-intensive and requires a large amount of fundamental research, long-term acquisition and processing of large amounts of experimental data. The solution to this problem may be to conduct a computer experiment using the finite element method to simulate the structure of materials and solve physics problems. In this paper, structural models were constructed for representative volumes of porous ceramic material based on hydroxyapatite with 0.1 and 0.5 wt. % carbon nanotubes additives. The effect of carbon nanotubes on the structure and optical properties of model samples was estimated by finite element simulations of terahertz radiation transmission in the frequency range from 0.2 to 1.1 THz. The optical properties such as the refractive index and absorption coefficient were calculated for the resulting models using the obtained data on the intensity, transmission speed and time delay of the THz pulse. The addition of nanotubes to the hydroxyapatite ceramic matrix leads to a decrease in the pore space in the samples, due to which the time delay of the THz pulse transmission through the models and the refractive index increase, while the absorption coefficient decreases. The simulation results showed quantitative similarity with the literature data on the refractive index and absorption coefficient of dental enamel and human cortical bone, and qualitative agreement with the experimental data on hydroxyapatite-carbon nanotubes ceramic composite. The authors declare no conflicts of interests.

Download file
Counter downloads: 4

Keywords

hydroxyapatite, carbon nanotubes, finite element method, porosity, refractive index, absorption coefficient, terahertz spectroscopy

Authors

NameOrganizationE-mail
Rezvanova Anastasia E.Institute of Strength Physics and Materials Science SB RASranast@ispms.ru
Kudryashov Boris S.Institute of Strength Physics and Materials Science SB RAS
Ponomarev Alexander N.Institute of Strength Physics and Materials Science SB RAS; Tomsk State University of Control Systems and Radioelectronics
Всего: 3

References

Moussy F. Biomaterials for the developing world // Journal of Biomedical Materials Research Part A. 2010. Vol. 94, № 4. P. 10011003. doi: 10.1002/jbm.a.32866.
Lahiri D., Ghosh S., Agarwal A. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review // Materials Science and Engineering: C. 2012. Vol. 32, № 7. P. 1727-1758. doi: 10.1016/j.msec.2012.05.010.
Han Y., Wei Q., Chang P., Hu K., Okoro O.V., Shavandi A., Nie L. Three-dimensional printing of hydroxyapatite composites for biomedical application // Crystals. 2021. Vol. 11, № 4. P. 353. doi: 10.3390/cryst11040353.
Díaz M., Barba F., Miranda M., Guitian F., Torrecillas R., Moya J.S. Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite // Journal of Nanomaterials. 2009. № 2009. P. 1-6. doi: 10.1155/2009/498505.
Zhang T., Cai W., Chu F., Zhou F., Liang S., Ma C., Hu Y. Hydroxyapatite/polyurea nanocomposite: Preparation and multiple performance enhancements // Composites Part A: Applied Science and Manufacturing. 2020. № 128. P. 105681. doi: 10.1016/j.compositesa.2019.105681.
Fiume E., Magnaterra G., Rahdar A., Verne E., Baino F. Hydroxyapatite for biomedical applications: A short overview // Ceramics. 2021. Vol. 4, № 4. P. 542-563. doi: 10.3390/ceramics4040039.
Zhao X., Zheng J., Zhang, W., Chen X., Gui Z. Preparation of silicon coated-carbon fiber reinforced HA bio-ceramics for application of load-bearing bone // Ceramics International. 2020. Vol. 46, № 6. P. 7903-7911. doi: 10.1016/j.ceramint.2019.12.010.
Khalid P., Suman V.B. Carbon nanotube-hydroxyapatite composite for bone tissue engineering and their interaction with mouse fibroblast L929 In Vitro // Journal of Bionanoscience. 2017. Vol. 11, № 3. P. 233-240. doi: 10.1166/jbns.2017.1431.
Ferreira C.R.D., Santiago A.A.G., Vasconcelos R.C., Paiva D.F.F., Pirih F.Q., Araujo A.A., Motta F.V., Bomio M.R.D. Study of microstructural, mechanical, and biomedical properties of zirconia/hydroxyapatite ceramic composites // Ceramics International. 2022. Vol. 48, № 9. P. 12376-12386. doi: 10.1016/j.ceramint.2022.01.102.
Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. London : Academic Press, 1982.
Cox S.C., Thornby J.A., Gibbons G.J., Williams M.A., Mallick K.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications // Materials Science and Engineering: C. 2015. № 47. P. 237-247. doi: 10.1016/j.msec.2014.11.024.
Akinribide O.J., Mekgwe G.N., Akinwamide S.O., Gamaoun F., Abeykoon C., Johnson O.T., Olubambi P.A. A review on optical properties and application of transparent ceramics // Journal of materials research and technology. 2022. № 21. P. 712-738. doi: 10.1016/j.jmrt.2022.09.027.
Wagner A., Ratzker B., Kalabukhov S., Sokol M., Frage N. Residual porosity and optical properties of spark plasma sintered transparent polycrystalline cerium-doped YAG // Journal of the European Ceramic Society. 2019. Vol. 39, № 4. P. 1436-1442. doi: 10.1016/j.jeurceramsoc.2018.11.006.
Shahmiri R., Standard O.C., Hart J.N., Sorrell C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review // The Journal of prosthetic dentistry. 2018. Vol. 119, № 1. P. 36-46. doi: 10.1016/j.prosdent.2017.07.009.
Faingold A., Cohen S.R., Shahar R., Weiner S., Rapoport L., Wagner H.D. The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae // Journal of Biomechanics. 2014. Vol. 47, № 2. P. 367-372. doi: 10.1016/j.j biomech.2013.11.022.
Veljovic D., Vukovic G.D., Steins I., Palcevskis E., Uskokovic P., Petrovic R., Janackovic D. Improvement of the mechanical properties of spark plasma sintered hap bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes // Science of Sintering. 2013, Vol. 45, № 2. P. 33-243. doi: 10.2298/SOS1302233V.
Barabashko M.S., Tkachenko M.V., Neiman A.A., Ponomarev A.N., Rezvanova A.E. Variation of Vickers microhardness and compression strength of the bioceramics based on hydroxyapatite by adding the multi-walled carbon nanotubes // Applied Nanoscience. 2019. Vol. 10, № 8. P. 2601-2608. doi: 10.1007/s13204-019-01019-z.
Barabashko M.S., Tkachenko M.V., Rezvanova A.E., Ponomarev A.N. Analysis of temperature gradients in the hydroxyapatite ceramics with the additives of multi-walled carbon nanotubes // Russian Journal of Physical Chemistry A. 2021. Vol. 95, № 5. P. 10171022. doi: 10.1134/S0036024421050058.
Mukherjee S., Kundu B., Chanda A., Sen S. Effect of functionalisation of CNT in the preparation of HAp-CNT biocomposites // Ceramics international. 2015. Vol. 41, № 3. P. 3766-3774. doi: 10.1016/j.ceramint.2014.11.052.
Lahiri D., Singh V., Keshri A.K., Seal S., Agarwal A. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties // Carbon. 2010. Vol. 48, № 11. P. 3103-3120. doi: 10.1016/j.carbon.2010.04.047.
Nikoghosyan A.S., Ting H., Shen J., Martirosyan R.M., Tunyan M.Y., Papikyan A.V., Papikyan A.A. Optical properties of human jawbone and human bone substitute Cerabone® in the terahertz range // J. Contemp. Phys. 2016. Vol. 51, № 3. P. 256-264. doi: 10.3103/S1068337216030087.
Bawuah P., Ervasti T., Tan N., Zeitler J.A., Ketolainen J., Peiponen K.E. Noninvasive porosity measurement of biconvex tablets using terahertz pulses // International journal of pharmaceutics. 2016. Vol. 509, № 1-2. P. 439-443. doi: 10.1016/j.ijpharm.2016.06.023.
Kistenev Yu.V., Nikolaev V.V., Kurochkina O.S., Borisov A.V., Sandykova E.A., Krivova N.A., Tuchina D.K., Timoshina P.A. Use of terahertz spectroscopy for in vivo studies of lymphedema development dynamics // Optics and Spectroscopy. 2019. № 126. P. 523529. doi: 10.1134/S0030400X19050138.
Bawuah P., Markl D., Farrell D., Evans M., Portieri A., Anderson A., Goodwin D., Lucas R., Zeitler J.A. Terahertz-based porosity measurement of pharmaceutical tablets: A tutorial // J. Infrared, Millimeter, Terahertz Waves. 2020. Vol. 41, № 4. P. 450-469. doi: 10.1007/s10762-019-00659-0.
Безмельницин Д.С., Лизункова Д.А., Шишкин И.А. Оптические свойства наноструктурированного кремния // Вестник молодых учёных и специалистов Самарского университета. 2020. Т. 1, № 16. С. 261-266.
COMSOL. URL: https://www.comsol.ru (accessed: 1 July 2024).
Fish J., Belytschko T. A First Course in Finite Elements. John Wiley & Sons, 2017.
Сизин П.Е. Теоретическое и численное моделирование электрической проводимости пористых сред // Горный информационно-аналитический бюллетенью. 2023. Т. 5. С. 43-56. doi: 10.25018/0236_1493_2023_5_0_43.
Fiocchi S., Chiaramello E., Marrella A., Suarato G., Bonato M., Parazzini M., Ravazzani P. Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response // PloS one. 2022. Vol. 17, № 9. P. e0274676. doi: 10.1371/journal.pone.0274676.
Rezvanova A.E., Kudryashov B.S., Ponomarev A.N., Knyazkova A.I., Nikolaev V.V., Kistenev Y.V.Composite hydroxyapatite-multiwalled carbon nanotubes: study of porosity by terahertz time domain spectroscopy // Nanosystems: Physics, Chemistry, Mathematics. 2023. Vol. 14, № 5. P. 530-538. doi: 10.1371/journal.pone.0274676.
Barabashko M., Ponomarev A., Rezvanova A., Kuznetsov V., Moseenkov S. Young’s modulus and vickers hardness of the hydroxyapatite bioceramies with a small amount of the multi-walled carbon nanotubes // Materials. 2022. Vol. 15, № 15. P. 5304. doi: 10.3390/ma15155304.
Резванова А.Е. Кудряшов Б.С., Скоробогатов Д.Д., Пономарев А.Н. Модель распространения терагерцового импульса через керамику на основе гидроксиапатита // Журнал технической физики. 2024. Т. 94, № 3. С. 358-365. doi: 10.61011/JTF.2024.03.57372.18-24.
Ray Optics Module User’s Guide. URL: https://doc.comsol.com/5.4/doc/com.comsol.help.roptics (accessed: 1 July 2024).
Borisenko S.I., Revinskaya O.G., Kravchenko N.S., Chernov A.V. The refractive index of light and methods for its experimental determination. Tomsk : Publishing house of Tomsk Polytechnic University, 2014. P. 142.
Huang P., Zhou B., Zheng Q., Tian Y., Wang M., Wang L., Li J., Jiang W. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes // Advanced Materials. 2020. Vol. 32, № 1. P. 905951. doi: 10.1002/adma.201905951.
Plazanet M., Tasseva J., Bartolini P., Taschin A., Torre R., Combes C., Rey C., Michele A.Di., Verezhak M., Gourrier A. Time-domain THz spectroscopy of the characteristics of hydroxyapatite provides a signature of heating in bone tissue // PLoS One. 2018. Vol. 13, № 8. P. e0201745. doi: 10.1371/journal.pone.0201745.
Bessou M., Chassagne B., Caumes J.-P., Pradere C., Maire P., Tondusson M., Abraham E. Three-dimensional terahertz computed tomography of human bones // Applied optics. 2012. Vol. 51, № 28. P. 6738-6744. doi: 10.1364/AO.51.006738.
 Model of a non-destructive testing method for ceramic material based on hydroxyapatite with carbon nanotube additives | Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety/Security Technologies. 2024. № 8. DOI: 10.17223/29491665/8/8

Model of a non-destructive testing method for ceramic material based on hydroxyapatite with carbon nanotube additives | Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety/Security Technologies. 2024. № 8. DOI: 10.17223/29491665/8/8

Download full-text version
Counter downloads: 34