Ferrofluids with controlled shielding characteristics based on magnetite and multi-walled carbon nanotubes
Studying materials with controlled electromagnetic characteristics is presented in the article. The complex permittivity spectra of ferrofluids of the following compositions were measured by impedance spectroscopy: kerosene + synthetic oil + iron oxide. Multiwall carbon nanotubes (1 wt. %) were added to composition. The effect of different orientation of a magnetic field with respect to the electric component of the electromagnetic field on the complex permittivity values is considered. It is shown that the values of the complex permittivity increase significantly with parallel orientation of the electric and magnetic fields. The spectra of the reflection coefficient for different thicknesses of ferrofluid layers in the microwave frequency range were calculated using the method of mathematical modeling. New results proving the promise of using relatively thin ferrofluid layers for solving problems of ensuring life safety when using modern high-frequency radio-electronic devices were obtained. The authors declare no conflicts of interests.
Keywords
ferrofluids,
permittivity,
mathematical modeling,
life safety technology,
electromagnetic response,
MWCNTAuthors
Pavlova Alexandra A. | National research Tomsk State University | sandy.surname@gmail.com |
Suslyaev Valentine I. | National research Tomsk State University | susl@mail.tsu.ru |
Korovin Evgeniy Yu. | National research Tomsk State University | korovin_ey@mail.tsu.ru |
Mazilov Dmitriy A. | National research Tomsk State University | dmitrijmazilov20@gmail.com |
Всего: 4
References
Kazakova M.A., Semikolenova N.V., Korovin E.Y., Zhuravlev V.A., Selyutin A.G., Velikanov D.A., Moseenkov S.I., Andreev A.S., Lapina O.B., Suslyaev V.I., Matsko M.A., Zakharov V.A., D’Espinose De Lacaillcrie J.B. Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: Tuning the effectiveness of electromagnetic shielding by varying the components ratio // Composites Science and Technology. 2021. Vol. 207. P. 108731-1-108731-11.
Ryapolov P., Vasilyeva A., Kalyuzhnaya D., Churaev A., Sokolov E., Shel ’deshova E. Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences // Nanomaterials. 2024. Vol. 14. P. 222. doi: 10.3390/nano14020222.
Dotsenko O.A., Pavlova A.A., Dotsenko V.S. The effect of external magnetic field on dielectric permeability of multiphase ferrofluids // Russian Physics Journal. 2018. Vol. 60, № 11. P. 955-960. doi: 10.1007ЫШ2-018-13087.
Archana V.N., Manoj M., Jacob J., Vinayasree S., Mohanan P., Garza-Navarro Marco A., Shaji Sadasivan, Anantharaman M. R. On the microwave absorption of magnetic nanofluids based on barium hexaferrite in the S and X bands prepared by pulsed laser ablation in liquid // AIP Advances. 2019. Vol. 9. P. 035035. doi: 10.1063/1.5088080.
Abbas K., Wang X., Rasool G., Sun T., Yin G., Razzaq I. Recent developments in the application of ferrofluids with an emphasis on thermal performance and energy harvesting // Journal of Magnetism and Magnetic Materials. 2023. Vol. 587. P. 171311. doi: 10.1016/j.jmmm.2023.1713n.
Li D., Li Y., Li Z., Wang Y. Theory analyses and applications of magnetic fluids in sealing // Friction. 2023. Vol. 11. P. 1771-1793. doi: 10.1007/s40544-022-0676-8.
Emmerson J.O., Shateri A., Xie J. Use of magnetic fluids in process system for pipe isolations // Heliyon. 2024. Vol. 10. P. 35221. doi: 10.1016/j. heliyon.2024.e35221.
Rosensweig R.E., Hirota Y., Tsuda, S., Raj K. Study of audio speakers containing ferrofluid // Journal of Physics: Condensed Matter. 2008. Vol. 20. P. 204147. doi: 10.1088/0953-8984/20/20/204147.
Rajput S., Pittman C. U.Jr., Mohan D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water // Journal of Colloid and Interface Science. 2016. Vol. 468. P. 334-346. doi: 10.1016/j.jcis.2015.12.008.
Герасимчук Н.А., Двадненко М.В., Капустянская Ж.В., Мельник И.А., Чудовский Р.Л. Магнитные жидкости в современном обществе // Успехи современного естествознания. 2006. № 10. С. 60-66.
Anjitha B., Maria J., Archana V. N., Navya J., Anantharaman M. R. High Dielectric Constant Liquid Dielectrics Based on Magnetic Nanofluids // Journal of Nanofluids. 2023. Vol. 12. P. 1141-1150. doi: 10.1166/jon.2023.1973.
Chieh J.J., Yang S.Y., Horng H.E., Hong C.-Y., Yang H.C. Magnetic-fluid optical-fiber modulators via magnetic modulation // Applied physics letters. 2007. Vol. 90. P. 133505. doi: 10.1063/1.2716365.
Sharma P., Tripathi A.M., Shukla R., Shukla A. Colloidal Microwave Absorber based on Magnetic Fluid of Iron Oxide Nanoparticles // Research & Development in Material science. 2021. Vol. 15. No. 2. P. 000860. doi: 10.31031/RDMS.2021.15.000860.
Dolnik B., Rajnak M., Clmbala R., Kolcunova I. Kurimskv J., Dzmura J., Petras J., Zbojovsky J., Kosterec M., KopCansk P., Timko M. The Shielding Effectiveness of a Magnetic Fluid in Radio Frequency Range // Acta physica polonica. 2018. Vol. 133, № 3. doi: 10.12693/APliysPolA. 133.585.
Xu H., Anlage S.M., Hu L., Gruner G. Pezzagna S., Meijer J. Microwave shielding of transparent and conducting single-walled carbon nanotube films // Applied physics letters. 2007. Vol. 90. P. 183119. doi: 10.1063/1.2734897.
Chahar M., Sharma V., Thakur O.P. Conductive network structure of MWCNTs-incorporated cobalt-zinc ferrite nanocomposite for enhanced electromagnetic shielding applications // Journal of Nanoparticle Research. 2022. Vol. 24. P. 195 doi: 10.1007/s11051-022-05578-1.
Yuan H., Zvonkina I.J., Al-Enizi A.M., Elzatahry A.A., Pyun J., Karim A. Facile Assembly of Aligned Magnetic Nanoparticle Chains in Polymer Nanocomposite Films by Magnetic Flow Coating // ACS applied materials & interfaces. 2017. Vol. 9. P. 11290-11298. doi: 10.1021/acsami.7b02186.
Кужир П.П., Letelier M., Быченок Д.С., Поддубская О.Г., Сусляев В.И., Коровин Е.Ю., Батуркин С.А., Ferro V., Celzard A. Электрофизические характеристики углеродного пеноматериала в СВЧ диапазоне // Известия высших учебных заведений. Физика. 2016. Т. 59, № 10. С. 160-166.
Krasnikov D. V., Dorofeev I.O., Smirnova T.E., Suslyaev V.I., Kazakova M.A., Moseenkov S.I., Kuznetsov V.L. Electromagnetic Interaction Between Spherical Aerogels of Multi-Walled Carbon Nanotubes // Physica Status Solidi B: Basic Research. 2017. Vol. 254. P. 1700256-1-1700256-6.
Мазилов Д.А., Павлова А.А., Сусляев В.И. Исследование низкочастотных спектров диэлектрической проницаемости магнитных жидкостей при приложении магнитного поля // Современные наука и практика: закономерности, прорывной характер, возможности и перспективы. СПб. : Изд-во СПбЦСА, 2024. С. 107-111.
Pavlova A., Suslyaev V., Mazilov D. Electrophysical characteristics of magnetic fluids with multiwalled carbon nanotubes // The 8th International Workshop on Electromagnetic Properties of Novel Materials - 2024. Moscow, Russia 26-30 August, 2024.
Sithara V., John P. Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions // Advances in Colloid and Interface Science. 2022. Vol. 307. P. 102729. doi: 10.1016/j.cis.2022.102729.