Digital Footprints as a New Source of Data on Quality of Life and Well-Being: An Overview of Current Trends | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2021. № 467. DOI: 10.17223/15617793/467/21

Digital Footprints as a New Source of Data on Quality of Life and Well-Being: An Overview of Current Trends

The article presents an overview of foreign research devoted to the study of the quality of life and well-being of the population by methods of digital sociology, i.e. with the help of new information and communication technologies (such as big data, machine learning, social network analysis, etc.). The most promising and actively developing area of research is the study of digital footprints of users, primarily in social networks (Facebook, Twitter, Weibo, etc.). The advantages (a high degree of detail in the distribution of user ratings over time and space, ability to get more information in general, availability at any time, speed of research, reducing the cost of conducting surveys, flexibility of methodology, etc.) and disadvantages (the problem of representativeness and reliability of data) of using such a methodology to study the quality of life and well-being of the population are discussed. Two main strategies for studying the quality of life and well-being of the population are considered, based on a different understanding of the role and significance of information and communication technologies in people’s daily lives. The first strategy - external - considers digital technologies as an external and self-sufficient factor that affects people’s daily lives. This strategy is to identify the impact of digital technologies (mainly social media) on individual nuances of quality of life and well-being (life satisfaction, social capital, social support, mental health, depression and fears, loneliness, etc.). The second strategy - internal - does not single out digital technologies as a separate external factor but considers digital technologies as an integral part of people’s daily existence. In this case, life in the online information space and life in the physical offline environment are inseparable components of the holistic existence of a modern person, so the analysis of human behavior and reactions in the information space carries as reliable information about the quality of life and well-being of a person as traditional data sources (surveys, etc.). It is concluded that despite significant methodological difficulties and a certain caution of many sociologists regarding the methods of digital sociology, this direction has great prospects and further improvement of the technological component of these studies will make digital methods of studying the quality of life and well-being as reliable as traditional survey methods in sociology.

Download file
Counter downloads: 110

Keywords

digital footprints, quality of life, well-being, big data, machine learning, digital sociology

Authors

NameOrganizationE-mail
Shchekotin Evgeny V.Novosibirsk State University of Economics and Managementevgvik1978@mail.ru
Всего: 1

References

Фомин М.В. Технологии качества жизни и постиндустриальная эпоха // Вопросы философии. 2016. № 3. С. 139-146.
Крыштановская О.В. Бесконтактная социология: новые формы исследований в цифровую эпоху // Цифровая социология. 2018. № 1. С. 4-9.
Bellet C., Frijters P. Big Data and Well-being // World Happiness Report 2019 / eds. by J. Helliwell, R. Layard, J. Sachs. New York : Sustainable Development Solutions Network, 2019. P. 97-122.
Sanchez C.R., Craglia M., Bregt A.K. New data sources for social indicators: the case study of contacting politicians by Twitter // International Journal of Digital Earth. 2017. Vol. 10, is. 8. P. 829-845.
Schober M.F., Pasek J., Guggenheim L., Lampe C., Conrad F.G. Research Synthesis : Social Media Analyses for Social Measurement // Public Opinion Quarterly. 2016. Vol. 80, is. 1. P. 180-211.
Дудина В.И., Юдина Д.И. Извлекая мнения из сети Интернет : могут ли методы анализа текстов заменить опросы общественного мне ния? // Мониторинг общественного мнения : Экономические и социальные перемены. 2017. № 5. С. 63-78.
Ravi K., Ravi V. A survey on opinion mining and sentiment analysis: tasks, approaches and applications // Knowledge-Based Systems. 2015. Vol. 89. P. 14^6.
Cody E.M., Reagan A.J., Dodds P.S., Danforth C.M. Public Opinion Polling with Twitter. 2016. URL: http://www.uvm.edu/pdodds/research /papers/cody2016b/
Antenucci D., Cafarella M., Levenstein M., Re C., Shapiro M.D. Using Social Media to Measure Labor Market Flows // NBER Working Papers 20010. 2014. URL: https://ideas.repec.org/p/nbr/nberwo/20010.html
Blue J., Condell J., Lunney T. Digital Footprints: Your Unique Identity // Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI). Belfast, UK : BCS Learning and Development Ltd, 2018. P. 1-5.
Conlin M. You are what you post // BusinessWeek. 2006. March 27. URL: https://www.bloomberg.com/news/articles/2006-03-26/you-are-what-you-post
Флёров О.В. Цифровой след человека в Интернете: основные гуманитарные подходы // Образовательные ресурсы и технологии. 2018. № 4 (25). С. 79-82.
Awaworyi Churchill S., Mishra V. Trust, Social Networks and Subjective Wellbeing in China // Social Indicators Research. 2017. Vol. 132. P. 313-339.
Beyens I., Pouwels J.L., van Driel I.I., Keijsers L., Valkenburg P.M. The effect of social media on well-being differs from adolescent to adolescent // Scientific Reports. 2020. Vol. 10. Art. No. 10763. URL: https://www.nature.com/articles/s41598-020-67727-7
Bourgeois A., Bower J., Carrol A. Social Networking and the Social and Emotional Wellbeing of Adolescents in Australia // Australian Journal of Guidance and Counselling. 2014. Vol. 24, is. 2. P. 167-182.
Brusilovskiy E., Townley G., Snethen G., Salzer M.S. Social media use, community participation and psychological well-being among individuals with serious mental illnesses // Computers in Human Behavior. 2016. Vol. 65. P. 232-240.
Krishnan A., Zhou X. Modeling the effect of health antecedents and social media engagement on healthy eating and quality of life // Journal of Applied Communication Research. 2019. Vol. 47, is. 4. P. 365-380.
Lee P.S.N., Leung L., Lo V., Xiong C., Wu T. Internet communication versus face-to-face interaction in quality of life // Social Indicators Research. 2010. Vol. 100. P. 375-389.
McDool E., Powell P., Roberts J., Taylor K. The internet and children’s psychological wellbeing // Journal of Health Economics. 2020. Vol. 69. Art. No. 102274. URL: https://www.sciencedirect.com/science/article/pii/S0167629618311408?via%3Dihub
Sabatini F., Sarracino F. Online Networks and Subjective Well-Being // Kyklos. 2017. Vol. 70, is. 3. P. 456-480.
Settanni M., Azucar D., Marengo D. Predicting Individual Characteristics from Digital Traces on Social Media : A Meta-Analysis // Cyberpsychology, Behavior, and Social Networking. 2018. Vol. 21, is. 4. P. 217-228.
Slegers K., Van Boxtel M.P.J., Jolles J. Effects of computer training and Internet usage on the well-being and quality of life of older adults: a randomized, controlled study // Journals of Gerontology : Psychological Sciences and Social Sciences. 2008.Vol. 63, is. 3. P. 176-184.
Summerskill B. Online social networks and wellbeing // Lancet. 2009. Vol. 374. P. 514.
Verduyn P., Ybarra O., Resibois M., Jonides J., Kross E. Do social network sites enhance or undermine subjective well-being? // A critical review. Social Issues and Policy Review. 2017. Vol. 11, is. 1. P. 274-302.
Wheatley D., Buglass S.L. Social network engagement and subjective well-being: a life-course perspective // British Journal of Sociology. 2019. Vol. 70, is. 1. P. 1971-1995.
Yang Y., Yuan Y., Archer N., Ryan E. Adoption of Social Media and the Quality of Life of Older Adults // 49th Hawaii International Conference on System Sciences (HICSS). 2016. P. 3133-3142. URL: https://ieeexplore.ieee.org/document/7427577
Hawi N.S., Samaha M. The Relations Among Social Media Addiction, Self-Esteem, and Life Satisfaction in University Students // Social Science Computer Review. 2017. Vol. 35, is. 5. P. 576-586.
Longstreet P., Brooks S. Life satisfaction: A key to managing internet & social media addiction // Technology in Society. 2017. Vol. 50. P. 73-77.
Zhan L., Sun Y., Wang N., Zhang X. Understanding the influence of social media on people’s life satisfaction through two competing explanatory mechanisms // Aslib Journal of Information Management. 2016. Vol. 68, is. 3. P. 347-361.
Burke M., Marlow C., Lento T. Social Network Activity and Social Well-Being // Proceedings of the SIGCHI conference on human factors in computing systems. 2010. P. 1909-1912.
Chen H.-T., Li X. The contribution of mobile social media to social capital and psychological well-being: Examining the role of communicative use, friending and self-disclosure // Computers in Human Behavior. 2017. Vol. 75. P. 958-965.
Ellison N.B., Vitak J., Gray R., Lampe C. Cultivating social resources on social network sites: Facebook relationship maintenance behaviors and their role in social capital processes // Journal of Computer-mediated Communication. 2014. Vol. 19. P. 855-870.
Valenzuela S., Halpern D., Katz J.E. Social network sites, marriage well-being and divorce: Survey and state-level evidence from the United States // Computers in Human Behavior. 2014. Vol. 36. P. 94-101.
Aalbers G., McNally R.J., Heeren A., de Wit S., Fried E.I. Social media and depression symptoms: a network perspective // Journal of Experimental Psychology: General. 2019. Vol. 148, is. 8. P. 1454-1462.
Alt D. Students’ Wellbeing, Fear of Missing out, and Social Media Engagement for Leisure in Higher Education Learning Environments // Current Psychology. 2018. Vol. 37. P. 128-138.
Appel H., Gerlach A.L., Crusius J. The interplay between Facebook use, social comparison, envy, and depression // Current Opinion in Psychology. 2016. Vol. 9. P. 44-49.
Lin L.Y., Sidani J.E., Shensa A., Radovic A., Miller E., Colditz J.B., Hoffman B.L., Giles L.M., Primack B.A. Association between social media use and depression among U.S. young adults // Depression and Anxiety. 2016. Vol. 33. P. 323-331.
McCloskey W., Iwanicki S., Lauterbach D., Giammittorio D.M., Maxwell K. Are Facebook “Friends” Helpful? Development of a Facebook-Based Measure of Social Support and Examination of Relationships Among Depression, Quality of Life, and Social Support // Cyberpsychology, behavior and social networking. 2015. Vol. 18, is. 9. P. 499-505.
Reer F., Tang W.Y., Quandt T. Psychosocial well-being and social media engagement: The mediating roles of social comparison orientation and fear of missing out // New Media & Society. 2019. Vol. 21, is. 7. P. 1486-1505.
Hunt M.G., Marx R., Lipson C., Young J. No More FOMO: Limiting Social Media Decreases Loneliness and Depression // Journal of Social and Clinical Psychology. 2018. Vol. 37, is. 10. P. 751-768.
Song H., Zmyslinski-Seelig A., Kim J., Drent A., Victor A., Omori K., Allen M. Does Facebook make you lonely?: A meta analysis // Computers in Human Behavior. 2014. Vol. 36. P. 446-452.
Hardy B.W., Castonguay J. The moderating role of age in the relationship between social media use and mental well-being: An analysis of the 2016 General Social Survey // Computers in Human Behavior. 2018. Vol. 85. P. 282-290.
O’Reilly M., Dogra N., Whiteman N., Hughes J., Eruyar S., Reilly P. Is social media bad for mental health and wellbeing? Exploring the perspectives of adolescents // Clinical Child Psychology and Psychiatry. 2018. Vol. 23, is. 4. P. 601-613.
Rasmussen E.E., Punyanunt-Carter N., LaFreniere J.R., Norman M.S., Kimball T.G. The serially mediated relationship between emerging adults’ social media use and mental well-being // Computers in Human Behavior. 2020. Vol. 102. P. 206-213.
Lee K.-T., Noh M.-J., Koo D.-M. Lonely people are no longer lonely on social networking sites: The mediating role of self-disclosure and social support // Cyberpsychology, Behavior, and Social Networking. 2013. Vol. 16. P. 413-418.
Chou H.-T.G., Edge N. ‘They Are Happier and Having Better Lives than I Am’: The Impact of Using Facebook on Perceptions of Others’ Lives // Cyberpsychology, behavior, and social networking. 2012. Vol. 15, is. 2. P. 117-121.
Priyadarshini C., Dubey R., Kumar Y.L.N., Jha R. Impact of Social Media Addiction on Employees' Wellbeing and Work Productivity // Qualitative Report. 2020. Vol. 25. P. 181-196.
Hao B., Li L., Gao R., Li A., Zhu T. Sensing Subjective Well-Being from Social Media // Proceedings of 10th International Conference Active Media Technology. Springer. 2014. P. 324-336.
Schwartz H.A., Sap M., Kern M.L., Eichstaedt J.C., Kapelner A., Agrawal M., Blanco E., Dziurzynski L., Park G., Stillwell D., Kosinski M., Seligman M.E., Ungar L.H. Predicting individual well-being through the language of social media // Pacific Symposium on Biocomputing. 2016. Vol. 21. P. 516-527.
Schwartz H.A., Eichstaedt J.C., Kern M.L., Dziurzynski L., Lucas R.E., Agrawal M., Park G.J., Lakshmikanth S.K., Jha S., Seligman M.E., Ungar L. Characterizing geographic variation in well-being using tweets // Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media. Cambridge, MA, 2013. P. 583-591.
Chen L., Gong T., Kosinski M., Stillwell D., Davidson R.L. Building a profile of subjective well-being for social media users // PloS ONE. 2017. Vol. 12, is. 11. Art. No. e0187278.
Wu K., Ma J., Chen Z., Ren P. Analysis of Subjective City Happiness Index Based on Large Scale Microblog Data // Proceedings of Web Technologies and Applications : 17th Asia-Pacific Web Conference. Springer, 2015. P. 365-377.
Wang N., Kosinski M., Stillwell D.J., Rust J. Can Well-Being be Measured Using Facebook Status Updates? Validation of Facebook’s Gross National Happiness Index // Social Indicators Research. 2014. Vol. 115. P. 483-491.
Yang C., Srinivasan P. Life Satisfaction and the Pursuit of Happiness on Twitter // PLoS ONE. 2016. Vol. 11, is. 3. Art. No. e0150881.
Mitchell L., Frank M.R., Harris K.D., Dodds P.S., Danforth C.M. The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place // PLoS ONE. 2013. Vol. 8, is. 5. Art. No. e64417.
Algan Y., Murtin F., Beasley E., Higa K., Senik C. Well-being through the lens of the Internet // PLoS ONE. 2019. Vol. 14, is. 1. Art. No. e0209562.
Collins S., Sun Y., Kosinski M., Stillwell D., Markuzon N. Are you satisfid with life? Predicting satisfaction with life from Facebook // International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, 2015. P. 24-33.
Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital records of human behavior // Proceedings of the National Academy of Sciences. 2013. Vol. 110, is. 15. P. 5802-5805.
Liu P., Tov W., Kosinski M., Stillwell D.J., Qiu L. Do Facebook status updates reflect subjective well-being // Cyberpsychology, Behavior, and Social Networking. 2015. Vol. 18, is. 7. P. 373-379.
Algan Y., Beasley E., Guyot F., Higa K., Murtin F., Senik C. Big Data Measures of Well-Being: Evidence from a Google Well-Being Index in the United States // OECD Statistics Working Papers. 2016. URL: https://www.oecd-ilibrary.org/economics/big-data-measures-of-well-being_5jlz9hpg0rd1-en
Hills T., Proto E., Sgroi D. Historical analysis of national subjective well-being using millions of digitized books // Nature : Human Behaviour. 2019. Vol. 3, is. 12. P. 1271-1275.
Leyva G. The mood of twitterers in Mexico. 2018. URL: https://www.cepal.org/sites/default/files/presentations/presentation-the-mood-of-twitterers-mexico-inegi.pdf
Восколович Н.А. Измерение влияния цифровой трансформации сферы услуг на качество жизни населения // Государственное управление. Электронный вестник. 2019. № 75. С. 6-23.
Литвинцева Г.П., Петров С.П. Теоретические основы взаимодействия цифровой трансформации и качества жизни населения // Журнал экономической теории. 2019. Т. 16, № 3. С. 414-427.
Shchekotin E., Baryshev A., Mundrievskaya Y. Images of Well-Being in Everyday Communication // Proceedings of the 32nd International Business Information Management Association Conference (IBIMA 2018) : Vision 2020: Sustainable Economic Development and Application of Innovation Management from Regional Expansion to Global Growth. 15-16 November 2018, Seville Spain. P. 2663-2673.
Щекотин Е.В., Мягков М.Г., Гойко В.Л., Кашпур В.В., Коварж Г.Ю. Субъективная оценка (не)благополучия населения регионов РФ на основе данных социальных сетей // Мониторинг общественного мнения: Экономические и социальные перемены. 2020. № 1. С. 78-116.
Щекотин Е.В., Коварж Г.Ю., Гойко В.Л., Петров Е.Ю., Бакулин В.В. Оценка качества жизни населения регионов РФ на основе цифровых данных: методологические аспекты // Векторы благополучия: экономика и социум. 2020. № 3 (38). С. 138-156.
 Digital Footprints as a New Source of Data on Quality of Life and Well-Being: An Overview of Current Trends | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2021. № 467. DOI: 10.17223/15617793/467/21

Digital Footprints as a New Source of Data on Quality of Life and Well-Being: An Overview of Current Trends | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2021. № 467. DOI: 10.17223/15617793/467/21

Download full-text version
Counter downloads: 474