Research of the artificial intelligence generative function in creating foreign languages lesson plans
The growing demand for artificial intelligence (AI) in various spheres of societal and human activity is driving the expansion of its functions. One such function in the field of education has become generating foreign language lesson plans. This raises the question: how effective are such plans in terms of their compliance with widely recognized conditions for achieving methodological goals, which are based on the principles of fundamental research in educational psychology, psycholinguistics, and the methodology of foreign language teaching itself? The article aims to identify problematic aspects of foreign language lesson planning and the potential for using AI in the professional education of future teachers. The authors employed a method of comparative analysis of foreign language lesson fragments developed by senior-year students-future teachers-and several AI aggregators (DeepSeek, Perplexity, GigaChat, and Qwen). The results, analyzed against a range of significant criteria for forming foreign language grammar skills (Task 1) and speaking skills (Task 2), show that the greatest difficulty for both the neural networks and the students was meeting the condition of "sequencing actions from simple to complex". Regarding the criteria of "vocabulary inventory", "situation individualization", and "activation of learner oral interaction", all fragments demonstrated sufficiently high scores. In Task 1, the quality of the fragments from three neural networks was significantly lower (Perplexity, GigaChat, and Qwen scored 65, 70, and 61 points respectively), while the students and DeepSeek scored 91 and 97 points respectively. The DeepSeek neural network demonstrated high final results, while GigaChat showed the lowest results in both fragments. The students overall showed higher results in Task 2 (96) than in Task 1 (91). In general, it is noted that completing Task 1 posed greater difficulties for both the students and the neural networks; both students and neural networks solve relatively simple tasks more effectively, while those requiring the consideration of a complex set of actions prove challenging. Although the lesson plans proposed by the neural networks exhibit a number of discrepancies with common requirements, it is unreasonable to reject their use entirely. Teachers gain the opportunity to partially save time and utilize teaching techniques and tools that differ from standard teaching materials or habitual experience. In training future foreign language teachers, lesson fragments generated by AI should be used as instructional materials for methodological analysis and for fostering a better understanding of the criteria for evaluating the effectiveness of various methodological solutions. The authors declare no conflicts of interests.
Keywords
lesson planning skills,
AI lesson plan generation,
comparative analysis,
lesson plan evaluation criteriaAuthors
| Borzova Elena V. | Petrozavodsk State University | borzovaelena40@gmail.com |
| Shemanaeva Mariya A. | Petrozavodsk State University | Indy2002@mail.ru |
Всего: 2
References
Lemoine B. Scientific data and religious opinions 2022 // Medium. URL: https://cajundiscordian.medium.com/scientific-data-and-religious-opinions-ff9b0938fc10 (дата обращения: 21.06.2022).
Sparkes M. Sentient AI: Has Google's LaMDA artificial intelligence really come to life // New Scientist. 2022. URL: https://www.newscientist.com/article/2323905-has-googles-lamda-artificial-intelligence-really-achieved-sentience/.
Gibert M., Martin D. In search of the moral status of AI: why sentience is a strong argument // AI & SOCIETY. 2022. Vol. 37 (1). P. 319-330.
Schmidt T., Strasser T. Artificial Intelligence in Foreign Language Learning and Teaching: A CALL for Intelligent Practice // Anglistik. 2022. Vol. 33. P. 165-184. doi: 10.33675/ANGL/2022/1/14.
Chiu T.K.F. et al. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education // Computers and Education: Artificial Intelligence. 2023. Vol. 4. P. 100-118.
Lim W.M., Gunasekara A., Pallant J.L., Pallant J.I., Pechenkina E. Generative AI and the future of education: Ragnarok or reformation? A paradoxical perspective from management educators // International Journal of Management Education. 2023. Vol. 21 (2). Art. 100790. doi: 10.1016/j. ijme.2023.100790.
Mohamed A.M. Exploring the potential of an AI-based Chatbot (ChatGPT) in enhancing English as a Foreign Language (EFL) teaching: Perceptions of EFL Faculty members // Education and Information Technologies. 2024. Vol. 29 (3). P. 3195-3217. doi: 10.1007/s10639-023-11917-z.
Белая книга. Искусственный интеллект и образование коротко о том, что происходит, Method, ВШМ СПбГУ // Искусственный интеллект Российской Федерации. 19.03.2024. URL: https://ai.gov.ru/knowledgebase/obrazovanie-i-kadry-ii/2024_belaya_kniga_iskusstvennyy_intellekt_i_obrazovanie_korotko_o_tom_chto_proishodit_method_vshm_spbgu/.
Сысоев П.В., Филатов Е.М., Евстигнеев М.Н, Поляков О.Г., Евстигнеева И.А., Сорокин Д.О. Матрица инструментов искусственного интеллекта в лингвометодической подготовке будущих учителей иностранного языка // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2024. № 29 (3). С. 559-588. doi: 10.20310/1810-0201-2024-29-3-559-588.
Zhang L. A New Machine Learning Framework for Effective Evaluation of English Education // International Journal of Emerging Technologies in Learning. 2021. Vol. 16 (12). P. 142-153. doi: 10.3991/ijet.v16i12.23323.
Chen X., Zou D., Xie H., Cheng G., Liu C. Two Decades of Artificial Intelligence in Education: Contributors, Collaborations, Research Topics, Challenges, and Future Directions // Educational Technology & Society. 2022. Vol. 25 (1). P. 28-47.
Wang Y., Liu C., Tu Y.-F. Factors affecting the adoption of ai-based applications in higher education: An analysis of teachers’ perspectives using structural equation modeling // Educational Technology & Society. 2021. Vol. 24 (3). P. 116-129.
Choi S., Jang Y., Kim H. Influence of pedagogical beliefs and perceived trust on teachers’ acceptance of educational artificial intelligence tools // International Journal of Human Computer Interaction. 2022. doi: 10.1080/10447318.2022.2049145.
Zhai X., Chu X., Chai C.S., Jong M.S.Y., Istenic A., Spector M., Liu J.-B., Yuan J., Li Y. A review of Artificial Intelligence (AI) in Education from 2010 to 2020 // Complexity. 2021. P. 1-18. doi: 10.1155/2021/8812542.
Istenic A., Bratko I., Rosanda V. Are pre-service teachers disinclined to utilize embodied humanoid social robots in the classroom? // British Journal of Educational Technology. 2021. Vol. 52 (6). P. 2340-2358. doi: 10.1111/bjet.13144.
Kaban A.L., Boy Ergul I. Teachers' Attitudes Towards the Use of Tablets in Six EFL Classrooms // Tomei L., Podovsovnik E. (Eds.) Advances in Educational Technologies and Instructional Design. Examining the Roles of Teachers and Students in Mastering New Technologies. IGI Global, 2020. P. 284-298. doi: 10.4018/978-1-7998-2104-5.ch015.
Tallvid M. Understanding teachers’ reluctance to the pedagogical use of ICT in the 1:1 classroom // Education and Information Technologies. 2016. Vol. 21 (3). P. 503-519. doi: 10.1007/s10639-014-9335-7.
Luckin R., Holmes W., Griffiths M., Forcier L.B.Intelligence unleashed: An argument for AI in education. 2016. URL: http://discovery.ucl.ac.uk/1475756/.
Ji H., Han I., Ko Y. A systematic review of conversational AI in language education: focusing on the collaboration with human teachers // Journal of Research on Technology in Education. 2022. Vol. 55 (1). P. 48-63. doi: 10.1080/15391523.2022.2142873.
Edmett A., Ichaporia N., Crompton H., Crichton R. Artificial intelligence and English language teaching: Preparing for the future (Second edition). British Council, 2024. doi: 10.57884/78EA-3C69.
Пассов Е.И., Кузовлева Н.Е. Основы коммуникативной теории и технологии иноязычного образования:методическое : методическое пособие для преподавателей русского языка как иностранного М. : Русский язык. Курсы, 2010. 568 с.
Шамов А.Н. Усвоение материала в контексте когнитивного развития школьников // Иностранные языки в школе. 2017. № 9. С. 2-10.
Борзова Е.В. Упражнения и задания как главный фактор организации деятельности учащихся в иноязычном образовании // Иностранные языки в школе. 2015. № 7. C. 7-14.
Lambert C., Zhang G. Engagement in the Use of English and Chinese as Foreign Languages: The Role of Learner Generated Content in Instructional Task Design // The Modern Language Journal. 2019. Vol. 103 (2). doi: 10.1111/modl.12560 0026-7902/19/391-411.
Lambert C. Frameworks for Using Taska in Second Language Instruction // Lambert C., Oliver R. (Eds.) Using Tasks in Second Language Teaching: Practice in Diverse Contexts. Bristol: Multilingual Matters, 2020. P. 13-32.
Celik S. Why learning about language teaching methods, past and present, is important. Approaches and Principles in English as a Foreign Language (EFL) Education. Ankara ; Eylul, 2020.