The adaptive control of investment portfolio | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2003. № 280.

The adaptive control of investment portfolio

The optimal control problemof investment portfolio (IP) is considered. The IP state-space structure is described by system of difference equations with randomjumping parameters. The equations parameters change according to discrete Markov chain evolution. The IP control algorithmwith using the adaptive filtration of equations parameters, describing IP structure, is proposed. The numerical modeling results arepresented.

Download file
Counter downloads: 361

Keywords

Authors

NameOrganizationE-mail
Gerasimov E.S.Tomsk State Universityevgen@ic.tsu.ru
Dombrovskiy V.V.Tomsk State Universitydombrovs@ef.tsu.ru
Всего: 2

References

Markowitz H. Portfolio Selection // J. Finance. 1952. V.7. No. 1. P. 77-91.
Tobin J. Liquidity Preference as Behavior Towards Risk // Rev. Econom. Stud. 1958. V. 26. No. 1. P. 65-86.
Young M.R. A Minimax Portfolio Selection Rule with Linear Programming Solution // Management Science. 1998. V. 44. No. 5. P. 673-683.
Dupakova J. Portfolio optimization via stochastic programming: Methods of output analysis // Mathematical Methods of Operations Research. 1999. No. 50. P. 245-270.
Kellerer H., Mansisni R., Speranza M. G. Selecting Portfolios with Fixed Costs and Minimum Transaction Lots // Annals of Operations Research. 2000. V.99. P. 287-304.
Golub B., Holmer M., McKendall R., et al. A Stochastic programming model for money management // European Journal of Operational Research. 1995. V.85. P. 282-296.
Merton R.C. Continuous-time Finance. Cambr. Ma. Blackwell. 1990.
Kushner H.J. Consistency Issues for Numerical Methods for Variance Control with Applications to Optimization in Finance // IEEE Transactions on Automatic Control. 1999. V.44. No. 12. P. 2283-2296.
Billio M., Pellizon L. Value-at-Risk: a multivariate switching regime approach // J. of Empirical Finance. 2000. No. 7. P. 531-554.
Dombrovsky V.V., Gerasimov E.S. Dynamic Network Model of Control Investment Portfolio in Continuous Time // Proceedings of the 5th Korea-Russia International Symposium on Science and Technology. Tomsk. Russia. 2001. V. 2. P. 304-308.
Герасимов Е.С., Домбровский В.В. Динамическая сетевая модель управления инвестиционным портфелем при квадратичной функции риска // Автоматика и телемеханика. 2002. № 2. C. 119-128.
Herzel S. A Simple model for option pricing with jumping stochastic volatility // International Journal of Theoretical and Applied Finance. 1998. V. 1. No. 4. P. 487-505.
Cvitanic J., Liptser R., Rozovskii B. Tracking volatility // Proceedings 39-th IEEE Conference on Decision and Control. 2000. P. 1189-1193.
Cajueiro D. O., Yoneyama T. Optimum portfolio choice for a class jump stochastic models // Proceedings of the 15th Triennial World Congress. Barselona. Spain. IFAC 2002.
Ширяев А.Н. Вероятностно-статистические модели эволюции финансовых индексов // Обозрение прикладной и промышленной математики. 1995. Т. 2. № 4. C. 527-555.
Brandt M.W., Sant-Clara P. Simulated likelihood estimation of diffusions with an application to exchange rate dynamics inincomplete markets // J. of Financial Economics. 2002. No. 63. P. 161-210.
Elliott R.J., Malcolm W.P., Tsoi A.H. Robust parameter estimation for asset price models with Markov modulated volatilities // J. of Economic Dynamics and Control. 2003. V. 27. No. 8. P. 1391-1409.
Elliott R.J. Exact adaptive filters for Markov chains observed in Gaussian noise // Automatica. 1994. No. 30. P. 1399-1408.
Athans M. The Matrix Minimum Principle // Inform. Control. 1968. V.11. P. 592-606.
 The adaptive control of investment portfolio | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2003. № 280.

The adaptive control of investment portfolio | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2003. № 280.

Download file