Evaluation of the DEA-Dynamic Efficiency of Significant Sectors of the Russian Economy | Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika – Tomsk State University Journal of Economics. 2020. № 51. DOI: 10.17223/19988648/51/11

Evaluation of the DEA-Dynamic Efficiency of Significant Sectors of the Russian Economy

The relevance of the research is due to the technological lag and low efficiency of Russian companies, which makes the development of a methodology for simulation innovation strategies particularly important. The authors tested the tools of the dynamic efficiency of the DEA model for evaluating the potential of significant sectors of the Russian economy and for forming simulation innovation strategies in these sectors. The following results were obtained: DEA-efficiency indicators of companies were calculated based on a set of cost and profit financial and economic indicators; heterogeneities of companies’ static and dynamic performance indicators were identified; time trends of dynamic performance indicators were evaluated; the sectors were compared based on a set of static and dynamic performance indicators.

Download file
Counter downloads: 79

Keywords

DEA-эффективность, догоняющее и опережающее развитие, отрасли, имитационное моделирование, дисперсионный анализ, панельные данные, DEA-efficiency, catch-up and outperforming development, industries, simulation, variance analysis, panel data

Authors

NameOrganizationE-mail
Akerman Elena N.Tomsk Polytechnic Universityaker@tomsk.gov.ru
Mikhalchuk Alexander A.Tomsk Polytechnic Universityaamih@tpu.ru
Spitsin Vladislav V.Tomsk Polytechnic University; Tomsk State University of Control Systems and Radioelectronicsspitsin_vv@mail.ru
Chistyakova Natalia O.Tomsk Polytechnic Universityworldperson@mail.ru
Всего: 4

References

TIBCO Software Inc. (2020). Data Science Textbook. URL: https://docs.tibco.com/data-science/textbook (date of access: 13.04.2020).
Халафян А.А., Боровиков В.П., Калайдина Г.В. Теория вероятностей, математическая статистика и анализ данных: Основы теории и практика на компьютере. Statistica. Excel. М. : URSS, 2016. 317 с.
Jafari Y. et al. Malmquist Productivity Index for Multi Time Periods // International Journal of Data Envelopment Analysis. 2014. Vol. 2, № 1. P. 315-322.
Coelli T. A Data Envelopment Analysis (Computer) Program // Centre for Efficiency and Productivity Analysis Department of Econometrics University of New England Armidale, Australia. URL: http://www.owlnet.rice.edu/~econ380/DEAP.PDF
Azad A.K., Masum A.K., Haque S. Use of Circular Malmquist Index (CMI) and Variable Returns to Scale (VRS-MI) in Productivity Measurement- A Comparative Study // International Journal of Ethics in Social Sciences. 2014. Vol. 2, № 2. P. 69-76.
Tohidi G., Razavyan S. A circular global profit Malmquist productivity index in data envelopment analysis // Applied Mathematical Modelling. 2013. № 37. P. 216-227.
Alimohammadlou M., Mohammadi S. Evaluating the productivity using Malmquist index based on double frontiers data // Procedia - Social and Behavioral Sciences. 2016. № 230. P. 58 - 66.
Fare R., Grosskopf S., Norris M., Zhang Z. Productivity Growth, Technical Progress, and Efficiency Changes in Industrialised Countries // American Economic Review. 1994. Vol. 84. Р. 66-83.
Seiford L.M., Thrall R.M. Recent Developments in DEA: The Mathematical Approach to Frontier Analysis // Journal of Econometrics. 1990. Vol. 46. Р. 7-38.
Seiford L.M. Data Envelopment Analysis: The Evolution of the State of the Art (1978-1995) // Journal of Productivity Analysis. 1996. Vol. 7. Р. 99-138.
Lovell C.A.K. Linear Programming Approaches to the Measurement and Analysis of Productive Efficiency // Top. 1994. Vol. 2. P. 175-248.
Malmquist S. Index numbers and indifference surfaces // Trabajos de Estatistica. 1953. № 4. P. 209-242.
Charnes A., Cooper W.W., Lewin A.Y., Seiford L.M. Data Envelopment Analysis: Theory, Methodology and Applications. Kluwer, 1995.
Спицын В.В. Оценка результативности развития высокотехнологичных отраслей России в сравнении с зарубежными странами // Мир новой экономики. 2014. № 3. С. 41-49. URL: https://www.elibrary.ru/item.asp?id=23457183
Кудрявцева С.С. Тенденции развития цифровой экономики в России // Управление устойчивым развитием. 2018. № 2. С. 21-27. URL: https://elibrary.ru/ item.asp?id=35590294&
Спицын В.В., Михальчук А.А. Цифровая экономика и генерация нового бизнеса в секторе ИТ // Инновации. 2019. № 6. С. 34-40. URL: https://www.elibrary.ru/ item.asp?id=39244173
Спицын В.В. Источники роста и территориальное размещение высокотехнологичных отраслей в России // Вестник НГУЭУ. 2019. № 2. С. 55-70. URL: https://www.elibrary.ru/item.asp?id=38509235
Савин А.В. Оценка готовности низкотехнологичных отраслей российской промышленности к процессам цифровизации // Московский экономический журнал. 2019. № 12. С. 558-568. URL: https://www.elibrary.ru/item.asp?id=41708609
Индикаторы инновационной деятельности: 2019: статистический сборник / Л.М. Гохберг, К. А. Дитковский, И. А. Кузнецова и др. М. : НИУ ВШЭ, 2019. 376 с.
High tech. URL: http://en.wikipedia.org/wiki/Hi-tech
Вершинина М.В. Низкотехнологичные отрасли: поиск инновационной стратегии развития // Инновации. 2010. № 8. С. 67-72. URL: https://www.elibrary.ru/ item.asp?id=17967736
Rodriguez M. Innovation, Knowledge Spillovers and High-Tech Services in European Regions // Engineering Economics. 2014. Vol. 25, № 1. Р. 31-39.
ОК 029-2014 (КДЕС Ред. 2). Общероссийский классификатор видов экономической деятельности (утв. Приказом Росстандарта от 31.01.2014 N 14-ст) (ред. от 10.07.2018). URL: http://www.consultant.ru/document/cons_doc_LAW_163320/
Eurostat indicators on High-tech industry and Knowledge - intensive services. URL: https://ec.europa.eu/eurostat/cache/metadata/Annexes/htec_esms_an3.pdf
Информационный ресурс СПАРК. URL: http://www.spark-interfax.ru/ (дата обращения: 02.03.2020).
Asaba S., Lieberman M.B. Why do firms behave similarly? A study on new product introductions in the Japanese soft-drink industry. Chicago, 1999.
Katz M.L., Shapiro C. Network externalities, competition, and compatibility // American Economic Review. 1985. № 75. Р. 424-440.
Lieberman M.B., Montgomery D.B. First-mover advantages // Strategic Management Journal. 1988. № 9. Р. 41-58.
Palley T.I. Safety in numbers: A model of managerial herd behavior // Journal of Economic Behavior and Organization. 1995. № 28. Р. 443-450.
Scharfstein D.S., Stein J.C. Herd behavior and investment // American Economic Review. 1990. № 80. Р. 465-479.
Schnaars S.P. Managing imitation strategies: How late entrants seize marketing from pioneers. N. Y. : The Free Press, 1994.
Shamsie J., Phelps C., Kuperman J. Better late than never: A study of late entrants in household electrical equipment // Strategic Management Journal. 2004. № 25. Р. 69-84.
Carpenter G.S., Nakamoto K. Consumer preference formation and pioneering advantage // Journal of Marketing Research. 1989. № 26 (3). Р. 285-298.
Kirzner I. Competition and Entrepreneurship. Chicago, IL : University of Chicago Press, 1973.
Robinson W.T., Min S. Is the first to market the first to fail? Empirical evidence for industrial goods businesses // Journal of Marketing Research. 2002. № 34 (1). Р. 120-128.
Schumpeter J.A. The Theory of Economic Development. Cambridge, MA : Harvard University Press, 1934.
 Evaluation of the DEA-Dynamic Efficiency of Significant Sectors of the Russian Economy | Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika – Tomsk State University Journal of Economics. 2020. № 51. DOI: 10.17223/19988648/51/11

Evaluation of the DEA-Dynamic Efficiency of Significant Sectors of the Russian Economy | Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika – Tomsk State University Journal of Economics. 2020. № 51. DOI: 10.17223/19988648/51/11

Download full-text version
Counter downloads: 965