Tax Clusterization of Regions of the Russian Federation to Identify Territories-Drivers of Sustainable Development | Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika – Tomsk State University Journal of Economics. 2021. № 53. DOI: 10.17223/19988648/53/11

Tax Clusterization of Regions of the Russian Federation to Identify Territories-Drivers of Sustainable Development

The relevance of tax clustering is due to the need for a competent scientifically grounded definition of territories that are drivers of economic growth. The aim of the study was to identify, on the basis of econometric methods, clusters of the regions of the Russian Federation by a set of indicators reflecting their tax status, tax administration, informatization of the tax environment. The Russian regions were grouped into clusters by a set of tax indicators based on official statistical data for 2018 using SPSS, Rstudio, Anaconda Navigator software. As a result of the anomalous values, five federal subjects were excluded from the analysis: Moscow, Sevastopol, Ingushetia, Khanty-Mansi and Yamalo-Nenets Autonomous Okrugs. Econometric analysis made it possible to conclude that there are three clusters of regions according to the analyzed parameters: 1) the least functionally proportional (7 regions), which have the lowest tax intensity of the gross regional product, the highest debt intensity of the gross regional product and the highest level of tax debt of the employed population, companies, and individual entrepreneurs; 2) medium functionally proportional (50 regions) with the lowest efficiency of tax administration, the highest coefficient of tax collection, the lowest level of taxation of the employed population and individual entrepreneurs (but not companies), the lowest level of tax debt of all analyzed subjects, and the lowest additional tax charges and sanctions for violation of tax legislation from tax audits, 3) the most comprehensively successful (22 regions), which are characterized by the highest tax intensity of the gross regional product and the highest level of tax revenues generated by the employed population, companies, and individual entrepreneurs. The regions of this cluster have the most effective taxation of value added and financial results of organizations. Among the regions of the third group, the leaders in terms of digital indicators are: Tyumen Oblast, Murmansk Oblast, Republic of Tatarstan, Leningrad Oblast. The study can develop in the following promising directions: 1) inclusion in the cluster analysis of indicators, not typical for the characteristics of the tax environment, that most fully reflect the influence of external diverse factors on the tax state of the regions; 2) extrapolation of the results to assess the tax status of the territories of other states; 3) the need to improve the tax clustering method based on artificial intelligence technology.

Download file
Counter downloads: 95

Keywords

tax, tax clustering, region, tax policy, digitalization, economic growth

Authors

NameOrganizationE-mail
Vylkova Elena S.Russian Presidential Academy of National Economy and Public Administrationvylkova-es@ranepa.ru
Victorova Natalia G.Peter the Great St. Petersburg Polytechnic Universityviktorova_ng@spbstu.ru
Naumov Vladimir N.Russian Presidential Academy of National Economy and Public Administrationnaumov-vn@ranepa.ru
Pokrovskaia Natalia V.St. Petersburg State Universityn.pokrovskaia@spbu.ru
Всего: 4

References

Цепилова Е.С., Беляева О.И. Перспективы региональной интеграционной политики на основе формирования кластеров // Вестник Волгоградского государственного университета. Серия 3: Экономика. Экология. 2017. Т. 19, № 3 (40). С. 99-108.
Pivovarov K.N., Zolotukhin A.B., Streletskaya V.V. Application of multicriteria fuzzy clusterization approach to assess the arctic seas oil and gas field development prospects // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 700, № 1.
Kudabayeva L., Issakova S., Nauryzbekova A., Mussaev G., Tuleyeva G., Zhantayeva A., Suleimenova I. Using supply chain management strategy for regional economic clusterization in Kazakhstan's chemical industry // International Journal of Supply Chain Management. 2019. № 8 (2). Р. 885-895.
Schepinin V., Skhvediani A., Kudryavtseva T. An empirical study of the production technology cluster and regional economic growth in Russia // Proceedings of the European Conference on Innovation and Entrepreneurship. 2018. P. 732-740.
Konkina V., Shemyakin A., Babkin I. Information and software of managing the industry cluster of the region // Proceedings of the 33rd International Business Information Management Association Conference. 2019. P. 8632-8637.
Dyrdonova A.N., Shinkevich A.I., Fomin N.Y., Andreeva E.S. Formation and development of industrial clusters in the regional economy // Espacios. 2019. № 40 (1). P. 24-31.
Kuzovleva I., Alekseenko V., Filippova T., Kudryavtseva T. Efficiency of construction cluster innovative potential management // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 497, № 1.
Gutman S.S., Zaychenko I.M., Kalinina O.V. Selection of strategy implementation tool for shipbuilding cluster of Arkhangelsk Oblast // Proceedings of the 29th International Business Information Management Association Conference. 2017. P. 1430-1438.
Selentyeva T.N., Degtereva V.A., Ivanova M.V., Mikheyenko O.V. The competitiveness of innovation clusters: Approaches to assessing and role of state cluster policy // Proceedings of the 32nd International Business Information Management Association Conference. 2018. P. 1706-1709.
Rodrigues M., Franco M. Taxonomy of Holistic Performance of Current Creative Cities: Empirical Study // Journal of Urban Planning and Development. 2020. Vol. 146, № 1.
Rudskaya I.A., Rodionov D. G. Comprehensive evaluation of Russian regional innovation system performance using a two-stage econometric model // Espacios. 2018. Vol. 39, № 4. P. 35-47.
Konnikov E.A., Konnikova O.A., Ivanov S.A., Novikova O. V. Instrumentation of ensuring the sustainability of the tax system // Proceedings of the 31st International Business Information Management Association Conference. 2018. P. 5218-5225.
Garg S., Goya A., Pa R. Why Tax Effort Falls Short of Tax Capacity in Indian States: A Stochastic Frontier Approach // Public Finance Review. 2017. № 45 (2). P. 232-259.
Zarate-Marco A., Valles-Gimenez J. Regional Tax Effort in Spain // Economics. 2019. № 13. P. 1-32.
Mintz J., Tulkens H. Commodity tax competition between member states of a federation: equilibrium and efficiency // Journal of Public Economics. 1986. № 29 (2). P. 133-172.
Kothenburger M. Tax Competition in a Fiscal Union with decentralized leadership // Journal of Urban Economics. 2004. № 55 (3). P. 498-513.
Kanbur R., Keen M. Jeux Sans Frontieres: Tax Competition and Tax Coordination When Countries Differ in Size // American Economic Review. 1993. Vol. 83, № 4. P. 877-892.
Mardan M., Stimmelmayr M. Tax competition between developed, emerging, and developing countries - Same same but different? // Journal of Development Economics. 2020. № 146.
Neog Y., Gaur A.K. Tax structure and economic growth: a study of selected Indian states // Journal of Economic Structures. 2020. № 9 (1). P. 1-12.
Yang T., Long R., Li W. Suggestion on tax policy for promoting the PPP projects of charging infrastructure in China // Journal of Cleaner Production. 2018. Vol. 174. P. 133-138.
Gao X., Zheng H., Zhang Y., Golsanami N. Environmental concern and level of emission reduction // Sustainability. 2019. Vol. 11, is. 4.
Varotsis N., Katerelos I. Tax behaviour relating to the review of a revised regional tax policy: a study in Greece // Journal of Economic Structures. 2020. Vol. 9, is. 1.
Walker A.K., Bueltel B.L. A legal analysis of state Tax policy for online sales: The recipe from Direct Marketing // Journal of Legal Tax Research. 2018. Vol. 16, iss. 1. P. 39-58.
Nellen A. In the green classroom - Tax policy of environmental tax rules and incentives: New directions in teaching and research // Journal of Green Building. 2017. Vol. 12, is. 4. P. 165-173.
Troyanskaya M.A., Tyurina Y.G. Contradiction of clusters taxation in Russia: Taxes as barriers and stimuli for clustering // Contributions to Economics. 2017. P. 3-11.
Zizka M., Valentova V.H., Pelloneova N., Stichhauerova E. Evaluation of the Efficiency of Public Support for Cluster Organizations in the Czech Republic // Danube. 2020. № 10 (4). P. 299-320.
Вылкова Е.С., Тарасевич А.А. Налоговая кластеризация регионов РФ как разновидность фиксации типов закономерностей // Вестник-Экономист ЗАБГУ. 2013. № 6. С. 1-16.
Вылкова Е.С., Тарасевич А.А. Комплексная система налоговых показателей для кластер-процедур на уровне субъектов РФ // Вестник Бурятского государственного университета. Экономика и менеджмент. 2014. № 3. С. 41-51.
Tax administration Goes Digital / ed. Channing Flynn. EY, 2018. 16 p.
Koroleva L., Aleksandrova A. Information technologies as an instrument to administrate added value tax // Communications in Computer and Information Science. 2016. № 674. P. 106-122.
Информационная экономика: этапы развития, методы управления, модели / под ред. В.С. Пономаренко, Т.С. Клебановой. Харьков, 2018. 676 с.
Sabitova N.M., Khafizova A.R. Information technologies as a factor of evolution of tax administration // Mediterranean Journal of Social Sciences. 2015. № 6. P. 169-173. DOI: 10.5901/mjss.2015.v6n1s3p169
Victorova N., Vylkova E., Pokrovskaia N., Shukhov F. Information technology and innovation in taxpayer registration and numbering: national and international experience // Proceedings of Peter the Great St. Petersburg Polytechnic University International Scientific Conference on innovations in digital economy. ACM, New York, 2019. P. 1-6. DOI: 10.1145/3372177.3373349
The Digital Economy and Society Index (DESI). URL: https://ec.europa.eu/digital-single-market/en/desi
Ермакова Е.А. Цифровые трансформации государственных финансов в России // Экономическая безопасность и качество. 2019. № 3 (1). С. 21-24.
Ермакова Е.А., Гуреева О.В. Особенности внедрения цифровых технологий в бюджетные отношения // Основные тенденции и перспективы развития экономики в координатах цифровой эры. Хабаровск, 2018. С. 52-57.
Koniagina M., Isaeva A., Mukhin K., Koroliov A., Vulfovich E., Dochkina A. Struggle for the technological leadership in the digital economy // Espacios. 2019. Vol. 40, № 37. P. 10-27.
Koniagina M., Belotserkovich D., Vorona-Slivinskaya L., Pronkin N. Development trends of an internet of things in context to information security policy of a person, business and the state // Talent Development and Excellence. 2020. Vol. 12, № 2s. P. 1181-1193.
Киреева Е.Ф. Налоговый режим для цифрового бизнеса в технологических и инновационных парках: белорусский опыт // Финансы. 2019. № 4. С. 37-41.
Налоги в цифровой экономике. Теория и методология / под ред. И.А. Майбурова, Ю.Б. Иванова. М. : ЮНИТИ-ДАНА, 2019. 279 с.
Цифровые технологии налогового администрирования / под ред. И.А. Майбурова, Ю.Б. Иванова. М. : ЮНИТИ-ДАНА, 2019. 263 с.
Информационное общество в Российской Федерации. 2019 : стат. сб. М. : НИУ ВШЭ, 2019. 197 с.
 Tax Clusterization of Regions of the Russian Federation to Identify Territories-Drivers of Sustainable Development | Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika – Tomsk State University Journal of Economics. 2021. № 53. DOI: 10.17223/19988648/53/11

Tax Clusterization of Regions of the Russian Federation to Identify Territories-Drivers of Sustainable Development | Vestnik Tomskogo gosudarstvennogo universiteta. Ekonomika – Tomsk State University Journal of Economics. 2021. № 53. DOI: 10.17223/19988648/53/11

Download full-text version
Counter downloads: 267