Homogeneous berger space and deformations of the SO(3)- structure by its geodesic on 5-dimension Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 6 (32).

Homogeneous berger space and deformations of the SO(3)- structure by its geodesic on 5-dimension Lie groups

An irreducible SO(3)-structure can be defined by means of a symmetric tensor field T of type (0,3) on a manifold M. Definition 1. An SO(3) structure on a 5-dimensional Riemannian manifold (M, g) is a structure defined by means of a rank 3 tensor field T for which the associated linear map X^T XeEnd(TM), XeTM, satisfies the following condition: (1) symmetricity, i. e. g(X,T rZ) = g(Z,T YX) = g(X,T ZY), (2) the trace tr(T X) = 0, (3) for any vector field ХеТМ, Tx X = g(XX)X. In any tangent space, it is possible to choose an adapted basis {e 1, e 2, e 3, e 4, e 5} in which metrics g and tensor Т have the canonical form g v = and =2 1(6(e2)2+ 4)2 - 2(e1)2 - 3(e2)2 - 3(e5)2)+ +e ((e ) -(e ) ) + ^V3e e e . Her, {e , e , e , e , e } is the dual coframe. Polarising the expression yields components of T: ^111 _ , ^122 _ , ^144 _ , ^133 _ 2, ^155 _ t433 _ 2 , 455 _ 2 , 235 _ 2 . Thus, an irreducible SO(3)-structure on a manifold is a Riemannian structure g and a tensor field T possessing properties (1) - (3). Theorem 1. The stabilizer of T iJk is an irreducible SO(3) embedded into O(5). Since the stabilizer T ijk is an irreducible SO(3), its orbit under the action of O(5) is a 7-dimension homogeneous space O(5)/SO(3). A homogeneous Berger space M = SO(5)/SO(3) is topologically equivalent to an S fiber bundle over S . With respect to the biinvariant scalar product (A,B) _ -1-tr(AB) on SO(5), a decomposition of the Lie algebra so(5) into a direct sum so(5) = so(3) + V of the Lie algebra and ad(SO(3)) of an invariant space V has been obtained. Examples of deformations of the structural tensor T by geodesics g t of the homogeneous space SO(5)/SO(3) are considered, the covariant divergence of the obtained structure tensor is calculated, and the property of nearly integrability is investigated.

Download file
Counter downloads: 353

Keywords

homogeneous Berger space, Lie group, special SO(3) structure, группа Ли, однородное пространство Берже, специальная SО(3)-структура

Authors

NameOrganizationE-mail
Sedykh Anna GennadyevnaKemerovo Institute of Plekhanov Russian University of EconomicsSedykh-anna@mail.ru
Berezina Anna SergeevnaKemerovo Institute of Plekhanov Russian University of EconomicsBerezina_1979@mail.ru
Всего: 2

References

Diatta A. Left invariant contact structures on Lie groups // arXiv: math.DG/0403555, v2, 2004.
Седых А.Г. О приближенно интегрируемых S0(3)-структурах на 5-мерных многообразиях // Вестник Томского государственного университета. Математика и механика. 2013. № 3(23).
Берестовский В.Н., Никоноров Ю.Г. Римановы многообразия и однородные геодезические. Владикавказ: ВНЦ РАН, 2011. 400 с.
Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии: в 2 т. М.: Наука, 1981.
Bobienski M.M., Nurowski P. Irreducible S0(3) geometry in dimension five // J. Reine Angew. Math. 2007. Vol. 605. P. 51-93.
Goette S., Kitchloo N., Shankar K. Diffeomorphism type of the Berger space S0(5)/S0(3) // arXiv: math.DG/ 06001066, v1, 2006.
Harvey R.,Lawson H. Calibrated geometries. // Acta Math. 1982. No. 148. P. 47-157.
 Homogeneous berger space and deformations of the SO(3)- structure by its geodesic on 5-dimension Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 6 (32).

Homogeneous berger space and deformations of the SO(3)- structure by its geodesic on 5-dimension Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 6 (32).