On the solution to a boundary value problem for an inhomogeneous elliptic equation by using Legendre and Chebyshev polynomials | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/1

On the solution to a boundary value problem for an inhomogeneous elliptic equation by using Legendre and Chebyshev polynomials

This paper constructs a solution to a fourth-order inhomogeneous elliptic equation within the framework of the Kirchhoff-Love theory of thin isotropic plates using the Legendre and Chebyshev polynomials of the first kind. It is assumed that the integration domain is a rectangle. The types of boundary conditions that correspond to pinching along the contour of a rectangular plate, hinged support, and their combinations are used as boundary conditions. The function that approximates the solution of the equation under consideration is represented as a finite sum of a series of these polynomials for each independent variable. Using the collocation method in combination with matrix transformations and properties of Legendre and Chebyshev polynomials, the boundary value problem is reduced to solving a system of linear algebraic equations with respect to coefficients in the expansion of the desired function in these polynomials. In this case, the zeros of the Legendre and Chebyshev polynomials for each independent variable are used as collocation points. The results of calculations using the proposed method of bending a square thin isotropic plate under the considered boundary conditions under the influence of a distributed load of a certain type of intensity leading to an analytical solution of the corresponding boundary value problem are presented. According to the comparison, the constructed solutions coincide with the analytical solutions with a high degree of accuracy.

Download file
Counter downloads: 11

Keywords

inhomogeneous elliptic equation of high order, orthogonal polynomials, bending of thin isotropic plates

Authors

NameOrganizationE-mail
Germider Oksana V.Northern (Arctic) Federal University named after M.V. Lomonosovo.germider@narfu.ru
Popov Vasilii N.Northern (Arctic) Federal University named after M.V. Lomonosovv.popov@narfu.ru
Всего: 2

References

Алцыбеев Г.О., Голоскоков Д.П., Матросов А.В. Метод суперпозиции в задаче изгиба за щемленной по контуру тонкой изотропной пластинки // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18, № 3. С. 347-364. doi: 10.21638/11701/spbu10.2022.305.
Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука, 1966.
Голушко С.К., Идимешев С.В., Шапеев В.П. Метод коллокации и наименьших невязок в приложении к задачам механики изотропных пластин // Вычислительные технологии. 2013. Т. 18, № 6. С. 31-43.
Шапеев В.П., Брындин Л.С., Беляев В.А. hp-Вариант метода коллокации и наименьших квадратов с интегральными коллокациями решения бигармонического уравнения // Вестник Самарского государственного технического университета. Сер. Физико-математические науки. 2022. Т. 26, № 3. С. 556-572. doi: 10.14498/vsgtu1936.
Беляев В.А., Брындин Л.С., Голушко С.К., Семисалов Б.В., Шапеев В.П. H-, P- и HPварианты метода коллокации и наименьших квадратов для решения краевых задач для бигармонического уравнения в нерегулярных областях и их приложения // Журнал вычислительной математики и математической физики. 2022. Т. 62, № 4. С. 531-552. doi: 10.31857/S0044466922040020.
Mai-Duy N., Strunin D., Karunasena W. A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation // Engineering analysis with boundary elements. 2022. V. 143. P. 687-699. doi: 10.1016/j.enganabound.2022.07.014.
Shao W., Wu X. An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations // Applied Mathematical Modelling. 2015. V. 39 (9). P. 2554-2569. doi: 10.1016/j.apm.2014.10.048.
Ye X., Zhang Sh. A family of H-div-div mixed triangular finite elements for the biharmonic equa tion // Results inApphed Mathematics. 2022. V. 15. Art. 100318. doi: 10.1016/j.rinam.2022.100318.
Моханти Р.К., Каур Д. Компактная разностная схема высокой точности для одномерной нестационарной квазилинейной бигармонической задачи второго рода: приложение к физическим задачам // Сибирский журнал вычислительной математики. 2018. Т. 21, № 1. С. 65-82. doi: 10.15372/SJNM20180105.
Lytvyn O.M., Lytvyn O.O., Tomanova I.S. Solving the biharmonic plate bending problem by the Ritz method using explicit formulas for splines of degree 5 // Cybernetics and Systems Analysis. 2018. V. 54. P. 944-947. doi: 10.1007/s10559-018-0097-x.
Зверяев Е.М., Коваленко М.Д., Абруков Д.А., Меньшова И.В., Кержаев А.П. О разложениях по функциям Папковича-Фадля в задаче изгиба пластины. М., 2019. doi: 10.20948/ prepr-2019-38 (Препринты Института прикладной математики им. М.В. Келдыша РАН; № 38).
Щербаков И.В., Люкшин Б.А. Моделирование поведения отклика ортотропной пластина: при воздействии динамической нагрузки // Вестник Томского государственного университета. Математика и механика. 2019. Т. 61. С. 111-118. doi: 10.17223/19988621/61/10.
VentselE., Krauthammer Th. Thin plates and shells. Theory: analysis and applications. Boca Raton: CRC Press, 2001.
Shanmugam N.E., Wang C.M. Analysis and design of plated structures. 2nd ed. Woodhead Publishing, 2022. doi: 10.1016/C2020-0-00441-X.
Суетин П.К. Классические ортогональные многочлены. М.: Наука, 1976.
Shen J., Tang T., Wang L. Spectral methods. Heidelberg; Berlin: Springer, 2011.
Mason J., Handscomb D. Chebyshev polynomials. Florida: CRC Press, 2003.
Liu S., Trenkler G. Hadamard, Khatri-Rao, Kronecker and other matrix products // International Journal of Information and Systems Sciences. 2008. V. 4 (1). P. 160-177.
Hildebrand F.B.Introduction to numerical analysis. 2nd ed. New York: Dover Publications, 1987.
 On the solution to a boundary value problem for an inhomogeneous elliptic equation by using Legendre and Chebyshev polynomials | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/1

On the solution to a boundary value problem for an inhomogeneous elliptic equation by using Legendre and Chebyshev polynomials | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/1

Download full-text version
Counter downloads: 79