The driving function of the Loewner equation generating a tangential slit emanating from the corner of a digon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/3

The driving function of the Loewner equation generating a tangential slit emanating from the corner of a digon

The driving function X of the Loewner equation that generates a non-tangential slit is Holder continuous with exponent 1/2. For a tangential slit emanating from a corner, the behavior of the driving function X(t) in a neighborhood of т = 0 depends on the tan-gency order of the slit and on the angle of the corner. In this paper we investigate a family of mappings f = f (z, r) , re [0,Г ]. For a fixed т, the mapping f takes the half-plane onto a digon with a slit (the length of the slit depends on t) along a circular arc emanating tangentially from a vertex of the digon with an angle an. We obtain the form of the expansion of the driving function X at the point т = 0, which generates the slit in the digon. We construct a mapping of the half-plane onto a triangle with tangential slit emanating from a corner of the triangle, assuming that the driving function has the same form as for the digon. We propose the following conjecture: if X generates in a simply connected domain D a slit along a circular arc emanating tangentially from a corner with an interior 1+ka 2+a angle ап, then the function X expands into the series X(r) = к =0

Download file
Counter downloads: 8

Keywords

the Loewner differential equation, conformal mapping, the Schwarz-Christoffel integral, accessory parameters

Authors

NameOrganizationE-mail
Karmushi MaherTomsk State Universitymaherkarmoushi1996@gmail.com
Kolesnikov Ivan A.Tomsk State Universityia.kolesnikov@mail.ru
Loboda Yulia A.Tomsk State Universityysenchurova@yandex.ru
Всего: 3

References

Lowner K. Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises // Math. Ann. 1923. V. 89. P. 103-121. doi: 10.1007/BF01448091.
Marshall D.E., Rohde S. The Loewner differential equation and slit mappings // J. Amer. Math. Soc. 2005. V. 18 (4). P. 763-778. doi: 10.1090/S0894-0347-05-00492-3.
Lind J. A sharp condition for the Loewner equation to generate slits // Ann. Acad. Sci. Fenn. Math. 2005. V. 30 (1). P. 143-158.
Prokhorov D., Vasil’ev A. Singular and tangent slit solutions to the Lowner equation // Anal. Math. Phys. 2009. P. 455-463. doi: 10.1007/978-3-7643-9906-1_23.
Lau K.S., Wu H.H. On tangential slit solution of the Loewner equation // Ann. Acad. Sci. Fenn. Math. 2016. V. 41. P. 681-691. doi: 10.5186/aasfm.2016.4142.
Колесников И.А. Конформное отображение полуплоскости на круговой многоугольник с нулевыми углами // Известия вузов. Математика. 2021. № 6. С. 11-24. doi: 10.26907/0021-3446-2021-6-11-24.
Кармуши М., Колесников И.А., Лобода Ю.А. Управляющая функция в уравнении Левнера, генерирующая разрез, выходящий из нулевого угла // Вестник Томского государственного университета. Математика и механика. 2025. № 94. С. 24-32. doi: 10.17223/19988621/94/2.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функ ция. Функции Лежандра. М.: Наука, 1965.
Александров И.А. Параметрические продолжения в теории однолистных функций. М.: Наука, 1976.
 The driving function of the Loewner equation generating a tangential slit emanating from the corner of a digon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/3

The driving function of the Loewner equation generating a tangential slit emanating from the corner of a digon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/3

Download full-text version
Counter downloads: 79