On left-invariant semi-Kähler structures on six-dimensional nilpotent nonsymplectic Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/4

On left-invariant semi-Kähler structures on six-dimensional nilpotent nonsymplectic Lie groups

It is known that there exist 34 classes of six-dimensional nilpotent Lie groups many of which admit left-invariant symplectic and complex structures. Among them, there are three classes of groups on which there are no left-invariant symplectic structures but there exist complex structures. The aim of the work is to determine new left-invariant geometric structures on these three six-dimensional Lie groups, compensating in a sense for the absence of symplectic structures, as well as to study their geometric properties. We study Lie groups Gi that have the following Lie algebras with nonzero Lie brackets: g1: [e1, e2] = e4, [e2, e3] = e5, [e1, e4] = e6, [e3, e5] = - e6, g2: [e1, e2] = e4, [e1, e4] = e5, [e2, e4] = e6, g3: [e1, e2] = e6, [e3, e4] = e6. It is shown that on these Lie algebras there exist non-degenerate 2-forms ю for which the property (oAdw = 0 holds. Such forms ю are called semi-Kahler. For each group Gi, families of semi-Kahler 2-forms ю, compatible complex and para-complex structures, and corresponding pseudo-Riemannian metrics are obtained.

Download file
Counter downloads: 4

Keywords

six-dimensional nilpotent Lie algebras, left-invariant semi-Kahler structures, para-complex structures, almost para-semi-Kahler structures

Authors

NameOrganizationE-mail
Smolentsev Nikolay K.Kemerovo State Universitysmolennk@mail.ru
Chernova Karina V.Kemerovo State Universitykarina.chernova.2002@mail.ru
Всего: 2

References

Goze M., Khakimdjanov Y., Medina A. Symplectic or contact structures on Lie groups // Differen tial Geometry and its Applications. 2004. V. 21 (1). P. 41-54. doi: 10.1016/j.difgeo.2003.12.006.
Salamon S.Complex structures on nilpotent Lie algebras // J. Pure Appl. Algebra. 2001. V. 157. P. 311-333. doi: 10.1016/S0022-4049(00)00033-5.
Смоленцев Н.К. Левоинвариантные почти пара-эрмитовы структуры на некоторых шестимерных нильпотентных группах Ли // Вестник Томского государственного университета. Математика и механика. 2019. № 58. С. 41-55. doi: 10.17223/19988621/58/4.
Gray A., Harvella L.M. The sixteen classes of almost Hermitian manifolds and their linear Invariants // Ann. Math. Pura Appl. 1980. V. 123. P. 35-58. doi: 10.1007/BF01796539.
Hitchin N.J. The geometry of three-forms in six dimensions // J. Diff. Geom. 2000. V. 55. P. 547-576. doi: 10.4310/jdg/1090341263.
Cordero L.A., Fernandez M., Ugarte L. Pseudo-Kahler metrics on six-dimensional nilpotent Lie algebras // J. of Geom. and Phys. 2004. V. 50. P. 115-137. doi: 10.1016/J.GEOMPHYS. 2003.12.003.
Алексеевский Д.В., Медори К., Томассини А. Однородные пара-кэлеровы многообразия Эйнштейна // Успехи математических наук. 2009. Т. 64, вып. 1 (385). С. 3-50. doi: 10.1070/RM2009v064n01ABEH004591.
Magnin L.Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras // Intern. J. of Algebra and Computation. 2007. V. 17 (1). P. 77-113. doi: 10.1142/S021819 6707003500.
Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. and its Appl. 2008. V. 26 (5). P. 544-552. doi: 10.1016/j.difgeo.2008.04.001.
 On left-invariant semi-Kähler structures on six-dimensional nilpotent nonsymplectic Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/4

On left-invariant semi-Kähler structures on six-dimensional nilpotent nonsymplectic Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/4

Download full-text version
Counter downloads: 79