Trajectory equations for a non-conservative natural system | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/7

Trajectory equations for a non-conservative natural system

In practice, it is often necessary to know the trajectory of motion of natural mechanical systems. At present, the trajectory equations in configuration space are well known only for some conservative systems. It is also important to derive equations for systems in non-stationary external fields. In this paper, we prove a theorem on the change in kinetic energy, which states that the rate of kinetic energy change depends both on external forces and on the rate of metric tensor change. This theorem can be expressed geometrically as a combination of the products of forces and changes in the metric tensor with tangent vectors. Generalized velocities and accelerations are similarly described in terms of the tangent vectors and their derivatives along the trajectory. Substitution of these expressions into the Lagrange equations results in trajectory equations corresponding to the degrees of freedom of the system. The left-hand side contains a covariant derivative of the tangent vector, and the right-hand side includes a cubic polynomial of the tangent vectors. These equations represent the geometric form of the Lagrange equations, which can be solved numerically using the fourth order Runge-Kutta method. Together with the trajectory parameterization, these equations provide a trajectory method for solving dynamics problems.

Download file
Counter downloads: 8

Keywords

natural system, kinetic energy change theorem, configuration space, metric tensor, tangent vector, trajectory, variable external fields

Authors

NameOrganizationE-mail
Voytik Vitaliy V.Bashkir State Medical Universityvvvojtik@bashgmu.ru
Всего: 1

References

Holm D.D. Geometric Mechanics. World Scientific, 2008. Pt. I: Dynamics and Symmetry.
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. М.: Физматлит, 2004. Т. 1: Механика.
Biro T.S. Variational Principles in Physics from Classical to Quantum Realm. Springer, 2023. doi: 10.1007/978-3-031-27876-1.
Слюсарев Г.Г. Геометрическая оптика. М.: ЛЕНАНД, 2019.
Кельман В.М., Явор С.Я. Электронная оптика. Л.: Наука, 1968.
Синдж Дж.Л. Тензорные методы в динамике. М.: Иностр. лит., 1947.
Синг Дж.Л. Классическая динамика. М.: Физматгиз, 1963.
Арнольд В.И. Математические методы классической механики. М.: Наука, 1989.
Di Benedetto E. Classical Mechanics. Theory and Mathematical Modeling. New York: Springer Science + Business Media, LLC, 2011. doi: 10.1007/978-0-8176-4648-6 (Cornerstones).
Abraham R., Marsden J.E., Ratiu T. Manifolds, Tensor Analysis, and Applications. New York: Springer Science + Business Media, LLC, 1988. doi: 10.1007/978-1-4612-1029-0 (Applied Mathematical Sciences; v. 75).
Lam K.S. Fundamental principles of classical mechanics: a geometrical perspective. Singapore: World Scientific Publishing Co. Pte. Ltd, 2014. doi: 10.1142/8947.
Bullo F., Lewis A. Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems. New York: Springer Science + Business Media, 2005. doi: 10.1007/978-1-4899-7276-7 (Texts in Applied Mathematics).
Holm D.D., Schmah T., Stoica C., Ellis D.C.P. Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford: Oxford University Press, 2009. doi: 10.1093/oso/ 9780199212903.001.0001.
Lewis A. The physical foundations of geometric mechanics // Journal of Geometric Mechanics. 2017. V. 9, is. 4. P. 487-574. doi: 10.3934/jgm.2017019.
Oliva W.M. Geometric Mechanics. Berlin-Heidelberg-New York: Springer-Verlag, 2002. (Lectures Notes in Mathematics; 1798).
Talman R. Geometric Mechanics. Toward a Unification of Classical Physics. Wiley VCH Verlag GmbH and Co. KGaA, 2007.
Candela A.M., Romero A., Sanchez M.Completeness of the Trajectories of Particles Coupled to a General Force Field // Arch. Rational Mech. Anal. 2013. V. 208. P. 255-274. doi: 10.1007/s00205-012-0596-2.
Гантмахер Ф.Р. Лекции по аналитической механике. 2-е изд., испр. М.: Наука, 1966.
Маркеев А.П. Теоретическая механика : учебник для университетов. М.: ЧеРо, 1999.
Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978.
Арнольд В.И. Обыкновенные дифференциальные уравнения. М.: МЦНМО, 2012.
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. М.: Наука, 2003. Т. 2: Теория поля.
 Trajectory equations for a non-conservative natural system | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/7

Trajectory equations for a non-conservative natural system | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 95. DOI: 10.17223/19988621/95/7

Download full-text version
Counter downloads: 79