Effect of stoichiometry violation and UV- and γ-irradiation on the viscoelastic properties of an epoxy binder
In this paper, the effect of quantitative composition violations (stoichiometry) and UV- and gamma irradiation on the viscoelastic mechanical properties of an epoxy material (ED-20 resin and TETA hardener) during curing has been considered. The relevance of this study is justified by the development of technologies for manufacturing composite structures by curing under space conditions. Experimental studies have shown that reducing the hardener ratio to 0.8 of the calculated value does not significantly affect the material properties. With a greater violation of stoichiometry, the dynamic material constants decrease significantly, whereas the viscosity increases. UV-irradiation of the epoxy resin during curing leads to increased material rigidity and a shear relaxation kernel r(t) near t=0. The dynamic shear modulus of the samples exposed to gamma irradiation for curing is higher than that of the fully cured but not irradiated samples. For the samples that are pre-cured before irradiation and those that are cured during irradiation, the dynamic shear moduli are almost the same. The viscosity of samples with violated stoichiometry increases with decreasing hardener ratio. This fact is typical for both gamma-irradiated and non-irradiated samples, although the viscosity of the gamma-irradiated samples is lower than that of the non-irradiated ones.
Keywords
epoxy binder,
stoichiometry violation,
UV-irradiation,
gamma irradiation,
viscoelastic propertiesAuthors
Pestrenin Valeriy M. | Perm State University | PestreninVM@mail.ru |
Pestrenina Irena V. | Perm State University | IPestrenina@gmail.com |
Landik Lidiya V. | Perm State University | LidiaLandik@gmail.com |
Merzlyakov Andrey F. | Perm State University | merzlyakov@psu.ru |
Pomortseva Tat’yana N. | Perm State University | tata.lisica@yandex.ru |
Fagalov Andrey R. | Perm State University | slowards@gmail.com |
Kondyurin Aleksey V. | Ewingar Scientific | alexey.kondyurin@gmail.com |
Kuznetsov Konstantin Yu. | Perm State University | kostya.kuzneczov.2002@mail.ru |
Всего: 8
References
Walter H.U. Fluid sciences and materials science in space. A European Perspective. Berlin: Springer-Verlag, 1987.
Пестренин В.М., Пестренина И.В., Ландик Л.В., Поморцева Т.Н., Мерзляков А.Ф. Уравнения вязкоупругости не полностью отвержденного эпоксидного связующего при малых деформациях // Вестник Томского государственного университета. Математика и механика. 2024. № 89. С. 119-134. doi: 10.17223/19988621/89/9.
Jing F., Zhao R., Li C., Xi Z., Wang Q., Xie H. Molecules Influence ofthe Epoxy/Acid Stoichiometry on the Cure Behavior and Mechanical Properties of Epoxy Vitrimers // Molecules. 2022. V. 27 (19). Art. 6335. doi: 10.3390/molecules27196335ы.
Czolkos I., Erkan Y., Dommersnes P., Jesorka A., Orwar O. Controlled Formation and Mixing of Two-Dimensional Fluids // Nano Letter. 2007. V. 7 (7). P. 1980-1984. doi: 10.1021/nl070726u.
Navarro R.S., Huang M.S., Roth J.G., Hubka K.M., Long C.M., Enejder A., Heilshorn S.C. Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology // Advanced Healthcare Materials. 2022. V. 11 (13). Art. e2200011. doi: 10.1002/adhm.202200011.
de Groh K.K., Banks B.A., Hammerstrom A.M., Youngstrom E.E., Kaminski C., Marx L.M., Fine E.S., Gummow J.D., WrightD. MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment // Proceedings of the Conference on ISS Utilization. 2001. Cape Canaveral, Fl, AIAA 2001-4923; NASA TM-2001-211311.
Pippin H.G. Final report on analysis of Boeing specimens flown on the effects of space envi ronment on materials experiment // Boeing Phantom Works. 1999.
Connell J. W. The effects of low-Earth orbit atomic oxygen exposure on Phenylphosphine oxidecontaining polymers // Final report, Evaluation of Space Environment and Effects on Materials (ESEM), Appendix D. 1985.
Kiefer R.L., Orwold R.A., Harrison J.E., Ronesi V.M., Thibeault S.A. The effects of the space environment on Polyetherimide films. Evaluation of Space Environment and Effects on Materials (ESEM) // Final report, Appendix C, NASDA. 1985.
Czaubon B., Paillos A., Siffre J., Thomas R. Mass spectrometric analysis of reaction products of fast oxygen atoms-material interactions // J. of Spacecraft and Rockets. 1998. V. 35 (6). P. 797-804.
Dever J., de Groh K.K., Townsend J.A., Wang L.L. Mechanical Properties Degradation of teflon FEP Returned from the Hubble Space telescope // NASA report 1998-206618. AIAA-98-0895.
Koontz S., Albyn K., Leger L. Atomic oxygen testing with thermal atom systems: a critical evaluation // J. of Spacecraft. 1991. V. 28 (3). P. 315-323.
Koontz S., Leger L., Albyn K., Cross J. Vacuum ultraviolet radiation / atomic oxygen synergism in materials reactivity // J. of Spacecraft. 1989. V. 27 (3). P. 346-348.
Lura F., Hagelschuler D., Abraimov V.V. The complex simulation of essential space environment factors for the investigation of materials and surfaces for space applications. Berlin: DLR, 2003.
Novikov L.S., Panasyuk M.I. Model of space. Moscow: KDU, 2007. V. 2.
ECSS Space Environment Standard // ECSS E-10-04 (Guide for LEO mission), ECSS-Q-70-04 (outgassing), ESA. 2000.
Dever J.A., Pietromica A.J., Stueber T., Sechkar E., Messer R. Simulated space vacuum ultraviolet (VUV) exposure testing for polymer films // NASA TM-2002-211337. AIAA-2001-1054. 2001.
de Groh K.K., Martin M. The Effect of Heating on the Degradation of Ground Laboratory and Space Irradiated Teflon FEP // NASA TM-2002-211704. 2002. URL: https://www.mdpi.com/journal/polymers/special_issues/UV_polymerization.
Worzakowska M. UV Polymerization of Methacrylates-Preparation and Properties of Novel Copolymers // Polymers. 2021. V. 13 (10). Art. 1659. doi: 10.3390/polym13101659.
Malik M.S., Schlogl S., Wolfahrt M., Sangermano M. Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers // Polymers. 2020. V. 12 (9). Art. 2146. doi: 10.3390/polym12092146.
Wypych G. Handbook of UV Degradation and Stabilization. Elsevier Science, 2020. URL: https://chemtec.org/products/978-1-895198-86-7#:~:text=.
Kondyurin A. Design and Fabrication of Large Polymer Constructions in Space. Elsevier, 2022. doi: 10.1016/B978-0-12-816803-5.00001-X.
Klein T.F., Lesieutre G.A. Space Environment effects on damping of polymer matrix carbon fiber composites // Journal of Spacecraft and Rockets. 2000. V. 37 (4). P. 519-525.
Gonzalez Nino C., Vidal J., Del Cerro M., Royo-Pascual L., Murillo-Ciordia G., Castell P. Effect of Gamma Radiation on the Processability of New and Recycled PA-6 Polymers // Polymers (Basel). 2023. V. 15 (3). Art. 613. doi: 10.3390/polym15030613. PMID: 36771914; PMCID: PMC9920695.
Vincius da Silva Paula M., Araujo de Azevedo L., Diego de Lima Silva I., Brito da Silva C.A. Jr., Vinhas G.M., Alves S. Jr. Gamma radiation effect on the chemical, mechanical and thermal properties of PCL/MCM-48-PVA nanocomposite films // Heliyon. 2023. V. 9 (7). Art. e18091. doi: 10.1016/j.heliyon.2023.e18091; PMID: 37483791; PMCID: PMC10362146.
Lucchesi L., Beghini M., Bernardo M.D., Raffaelli F., Cemmi A., Sarcina I.D., Ferrante C. Y-irradiation effect on the mechanical properties of in situ specimens made of structural epoxy adhesive and comparison with adhesive bulk behavior //International Journal of Adhesion and Adhesives. 2023. V. 124. Art. 103387. doi: 10.1016/j.ijadhadh.2023.103387.
Hossain Md.T., Hossain Md.S., Kabir M.S., Ahmed S., Khan R.A., Chowdhury A.M.S. Improvement of mechanical properties of jute-nano cellulose-reinforced unsaturated polyester resin-based composite: Effects of gamma radiation // Hybrid Advances. 2023. V. 3. Art. 100068. doi: 10.1016/j.hybadv.2023.100068.
Chayoukhi S., Gassoumi B., Dhiflaoui H., Mejri A., Boukhachem A., Amlouk M. Effects of 60Co Y-radiation on the structural, morphological, optical, tribological and mechanical properties of SnO2 sprayed thin films // Inorganic Chemistry Communications. 2023. V. 155. Art. 111037. doi: 10.1016/j.inoche.2023.m037.
Chayoukhi S., Abid M., Gassoumi B., Mejri A., Boukhachem A., Amlouk M. Experimental and numerical studies of the mechanical properties of nitrile-butadiene rubber exposed to gamma radiation // Radiation Physics and Chemistry. 2023. V. 208. Art. 110925. doi: 10.1016/j.radphyschem.2023.110925.