Studying the slip phenomenon for a viscous fluid flow in a curved channel
The pressure flow of a viscous uncom-pressible fluid in a channel curved at the right angle is studied. We consider three models of the interaction between the fluid and solid wall that satisfy the following boundary conditions: no-slip, Navier slip, and slip with a limit stress. The problem is solved numerically using a finite-difference algorithm based on the SIMPLE scheme. The steady pattern flow with the formation of the circulation areas around corner points is demonstrated. It is characterized by one-dimensional flow regions near inlet and outlet boundaries. Parametric studies of the influence of interaction models and main parameters on the flow pattern are performed. In particular, tangent velocity profiles at the solid wall as functions of the slip length, circulation areas' sizes, and limit stress are constructed.
Keywords
течение,
вязкая жидкость,
граничное условие,
изогнутый канал,
численное моделирование,
flow,
viscous fluid,
boundary condition,
curved channel,
numerical simulationAuthors
Borzenko Evgeniy Ivanovich | Tomsk State University | borzenko@ftf.tsu.ru |
Diakova Olga Alekseevna | Tomsk State University | olga.dyakova.1992@mail.ru |
Shrager Gennadiy Rafailovich | Tomsk State University | shg@ftf.tsu.ru |
Всего: 3
References
Neto C., Evans D., Bonaccurso E. Boundary slip in Newtonian liquids: a review of experimental studies // Reports on Progress in Physics. 2005. V. 39. P. 2859-2897.
Янков В.И. Переработка волокнообразующих полимеров. Основы реологии полимеров и течение полимеров в каналах. Москва - Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2008. 264 с.
Koopmans Rudolf J., Molenaar Jaap. The "sharkskin effect" in polymer extrusion // Polymer Engineering & Science. 1998. V. 38. P. 101-107.
Rao I.J., Rajagopal K.R. The effect of the slip boundary condition on the flow of fluids in a channel // Acta Mechanica. 1999. V. 135. P. 113-126.
Bahrami M., TamayolA., Taheri P. Slip-flow pressure drop in microchannels of general cross section // J. Fluids Engineering. 2009. V. 131. P. 031201-1 - 031201-8.
Volker J. Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equation - numerical test s and aspects of the implementation // J. Computational and Applied Mechanics. 2002. V. 147. P. 287-300.
Minakova A., Rudyak V., Dektereva A., Gavrilov A. Investigation of slip boundary conditions in the T-shaped microchannel // Int. J. Heat and Fluid Flow. 2013. V. 43. P. 161-169.
Hoomana K., Hooman F., Famouri M. Scaling effects for flow in micro-channels: Variable property, viscous heating, velo'city slip, and temperature jump // Int. Communications in Heat and Mass Transfer. 2009. V. 36. P. 192-196.
Issa R.J. Solution of the implicity discretized reacting flow equations by operator-splitting // Journal of Computational Physics. 1986. V. 62. P. 40-65.