Motion group of the simplicial plane as a solution of a functional equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Motion group of the simplicial plane as a solution of a functional equation

Proceeding from metrical viewing of geometry, which appeared in the 19th century in works of H. Helmholtz and A. Poincare and which is deeply connected with F. Klein's group conception, Yu.I. Kulakov created a general conception of distance - the physical structures' theory based on the so-called phenomenological symmetry. The essence of this symmetry is the fact that there is a functional connection between all mutual distances for n + 2 arbitrary points in the n-dimensional space. G.G. Mikhailichenko's works established the equivalence of the group and phenomenological symmetries, which helped him to construct a complete classification of two-dimensional phenomenologically symmetric geometries. Along with well-known two-dimensional geometries (Euclidean plane, Lobachevsky plane, Minkowski plane, symplectic plane, two-dimensional sphere, and two-dimensional one-sheet hyperboloid) this classification shows the Helmholtz plane, pseudo-Helmholtz plane, and simplicial plane which was also the object of study of such geometricians as A.A. Aleksandrov and R.I. Pimenov. The aim of this study is to find a local group of the set of all simplicial plane motions as a solution for a functional equation. Defining the set of plane motions preserving the metric function as a function of a pair of points leads to developing analytical methods for solving the corresponding functional equations; that allows one to complement the theory of functional equations since there are few general methods of their solution. It has been found that any motion of a simplicial plane is defined by a linear transformation, which was not assumed beforehand and was not obvious. Nevertheless the whole set of motions turned out to be a group essentially dependent on three independent parameters. Thus, a simplicial plane is endowed with the group symmetry of the 3rd degree, i.e. it is a phenomenologically symmetric geometry with maximum mobility. It should be noted that this result is not valid for an arbitrary geometry but is typical just for phenomenologically symmetric geometries.

Download file
Counter downloads: 357

Keywords

феноменологическая симметрия, феноменологически симметричная двумерная геометрия, локальная группа движений, функциональное уравнение, phenomenological symmetry, phenomenologically symmetric two-dimensional geometry, local group of movements, functional equation

Authors

NameOrganizationE-mail
Bogdanova Rada AlexandrovnaGorno-Altaisk State Universitybog-rada@yandex.ru
Всего: 1

References

Гельмгольц Г. О фактах, лежащих в основании геометрии // Об основаниях геометрии. М.: ГИТТЛ, 1956. С. 366-388.
Пуанкаре А. Об основных гипотезах геометрии // Об основаниях геометрии. М.: ГИТТЛ, 1956. С. 388-398.
Клейн Ф. Сравнительное обозрение новейших геометрических исследований ("Эрлан-генская программа") // Об основаниях геометрии. М.: ГИТТЛ, 1956. С. 402-434.
Кулаков Ю.И. Теория физических структур. М.: Доминико, 2004.
Кулаков Ю.И. Геометрия пространств постоянной кривизны как частный случай теории физических структур // ДАН СССР. 1970. Т. 193. № 5. С. 985-987.
Михайличенко Г.Г. О групповой и феноменологической симметриях в геометрии // ДАН СССР. 1983. T. 269. № 2. C. 284-288. (Michailichenko G.G. On group and pheno-menological simmetries in geometry // Soviet Math. Dokl. 1983. V. 27. No. 2. P. 325-326.)
Михайличенко Г.Г. Полиметрические геометрии. Новосибирск: НГУ, 2001.
Михайличенко Г.Г. Двумерные геометрии. Барнаул: Изд-во Барнаульского государственного педагогического университета, 2004.
Кыров В.А. Гельмгольцевы пространства размерности два // Сиб. матем. журн. 2005. Т. 46. № 6. С. 1341-1359.
Александров А.Д. Геометрия и приложения (Избранные труды; Т. 1). Новосибирск: Наука, 2006.
Пименов Р.И. Необходимые и достаточные условия линейности преобразований, сохраняющих конусы // Матем. заметки. 1969. Т. 6. № 4. С. 361-369.
Азбелев Н.В., Максимов В.П., Рахматуллина Л.Ф. Элементы современной теории функционально- дифференциальных уравнений. Методы и приложения. М.: Институт компьютерных исследований, 2002.
Kuczma M. Functional equations in a single variable. Polska Akademia Nauk. Monografie matematyczne. T. 46. Warszawa: Polish Scientific Publishers, 1968.
Полянин А.Д., Зайцев В.Ф., Журов А.И. Методы решения нелинейных уравнений математической физики и механики. М.: Физматлит, 2005.
Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974
Арнольд В.И. Обыкновенные дифференциальные уравнения. М.: Наука, 1966.
 Motion group of the simplicial plane as a solution of a functional equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Motion group of the simplicial plane as a solution of a functional equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Download full-text version
Counter downloads: 811