Application of the two-parametric k-o> turbulence model for studying the thermal bar phenomenon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 5(31).

Application of the two-parametric k-o> turbulence model for studying the thermal bar phenomenon

In this paper, the phenomenon of the thermal bar in Kamloops Lake (Canada) is studied with a nonhydrostatic mathematical model. A thermal bar is a narrow zone in a lake in temperate latitudes where maximum-density waters sink from the surface to the bottom. Two different turbulence models are compared: the algebraic model of Holland P. R. et al. [1] and the two-equation k-ю model of Wilcox D.C. [2]. The two-parameter model of turbulence developed by D.C. Wilcox consists of equations for turbulence kinetic energy (k) and specific dissipation rate (ro).The mathematical model which includes the Coriolis force due to the Earth's rotation, is written in the Boussinesq approximation with the continuity, momentum, energy, and salinity equations. The Chen-Millero equation [8], adopted by UNESCO, was taken as the equation of state. The formulated problem is solved by the finite volume method. The numerical algorithm for finding the flow and temperature fields is based on the Crank-Nicholson difference scheme. The convective terms in the equations are approximated by a second-order upstream QUICK scheme [10]. To calculate the velocity and pressure fields, the SIMPLED procedure for buoyant flows [11], which is a modification of the well-known Patankar's SIMPLE method [9], has been developed. The systems of grid equations at each time step are solved by the under-relaxation method or N.I. Buleev's explicit method [12]. The turbulence models were applied to predict the evolution of the spring thermal bar in Kamloops Lake. The numerical experiments have shown that the application of the k-ю turbulence model leads to new effects in the thermal bar evolution.

Download file
Counter downloads: 354

Keywords

термобар, модель турбулентности, математическое моделирование, численный эксперимент, озеро Камлупс, thermal bar, temperature of maximum density, Boussinesq approximation, numerical experiment, Kamloops Lake

Authors

NameOrganizationE-mail
Tsydenov Bair OlegovichTomsk State Universitybtsydenov@gmail.com
Starchenko Alexander VasilievichTomsk State Universitystarch@math.tsu.ru
Всего: 2

References

Carmack E.C., Gray C.B.J., Pharo C.H., Daley R.J. Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia // Limnol. Oceanogr. 1979. V. 24. No. 4. P. 634-644.
Булеев Н.И. Метод неполной факторизации для решения двумерных и трехмерных разностных уравнений типа диффузии // Журн. вычисл. матем. и матем. физ. 1970. Т. 10. № 4. С. 1042-1044.
Цыденов Б.О., Старченко А.В. Численное моделирование эффекта термобара в озере Байкал в период весенне-летнего прогревания // Вестник Томского государственного университета. Математика и механика. 2011. № 1(13). С. 120-130.
Цыденов Б.О., Старченко А.В. Численная модель взаимодействия систем «река - озеро» на примере весеннего термобара в озере Камлупс // Вестник Томского государственного университета. Математика и механика. 2013. № 5(25). С. 102-115.
Leonard B. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comput. Meth. Appl. Mech. Eng. 1979. V. 19. No. 1. P. 59-98.
Chen C.T., Millero F.G. Precise thermodynamic properties for natural waters covering only limnologies range // Limnol. Oceanogr. 1986. V. 31. No. 3. P. 657-662.
Патанкар С. Численные методы решения задач теплообмена и динамики жидкости: пер. с англ. / под ред. В.Д. Виоленского. М.: Энергоатомиздат, 1984. 152 с.
Holland P.R., Kay A, Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Sys. 2003. V. 43. No. 1-2. P. 61-81.
Umlauf L., Burchard H., Hutter K. Extending the Л-ю turbulence model towards oceanic applications // Ocean Modelling. 2003. V. 5. P. 195-218.
Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA Journal. 1988. V. 26. No. 11. P. 1299-1310.
Rodi W. Examples of calculation methods for flow and mixing in stratified fluids // J. Geophys. Res. 1987. V. 92. No. C5. P. 5305-5328.
Mellor G.L., Yamada Т. Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. Space Phys. 1982. V. 20. No. 4. P. 851-875.
Killworth P.D., СагтасЛ E.C., Weiss R.F., Matear R. Modeling deep-water renewal in Lake Baikal // Limnol. Oceanogr. 1996. V. 41. No. 7. P. 1521-1538.
Овчинникова Т.Э., Бочаров О.Б. Сезонное влияние вод притока на водообмен в глубоком озере в условиях больших уклонов дна // Вычисл. технологии. 2007. Т. 12. № 6. C. 59-72.
 Application of the two-parametric k-o> turbulence model for studying the thermal bar phenomenon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 5(31).

Application of the two-parametric k-o> turbulence model for studying the thermal bar phenomenon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 5(31).

Download full-text version
Counter downloads: 1011