A refinement of the boundary element collocation method near the boundary of domain in the case of two-dimensional problems of non-stationary heat conduction with boundary conditions of the second and third kind | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/1

A refinement of the boundary element collocation method near the boundary of domain in the case of two-dimensional problems of non-stationary heat conduction with boundary conditions of the second and third kind

In this paper, we consider initial-boundary value problems (IBVPs) for the equation ∂t u=cθ'∆2u - p u with constants a, p > 0 in an open two-dimensional spatial domain Ω with boundary conditions of the second and third kind at a zero initial condition. A fully justified collocation boundary element method is proposed, which makes it possible to obtain uniformly convergent in the space-time domain Ω × [0, T] approximate solutions of the abovementioned IBVPs. The solutions are found in the form of the single-layer potential with unknown density functions determined from boundary integral equations of the second kind. To ensure the uniform convergence, integration on arc-length s when calculating the potential operator is carried out in two ways. If the distance r from the point х ∈ Ω at which the potential is calculated to the integration point х' ∈ ∂Ω does not exceed approximately one-third of the radius of the Lyapunov circle Rλ, then we use exact integration with respect to a certain component ρ of the distance r: ρ ≡ (r2 - d2)½ (d is the distance from the point х ∈ Ω to the boundary ∂Ω). This exact integration is practically feasible for any analytically defined curve ∂Ω. In this integration, functions of the variable ρ are taken as the weighting functions and the rest of the integrand is approximated by quadratic interpolation on ρ. The functions of ρ are generated by the fundamental solution of the heat equation. The integrals with respect to s for r > Rλ3 are calculated using Gaussian quadrature with γ points. Under the condition ∂Ω ∈ C5∩C (γ ≥ 2), it is proved that the approximate solutions converge to an exact one with a cubic velocity uniformly in the domain Ω × [0, T]. It is also proved that the approximate solutions are stable to perturbations of the boundary function uniformly in the domain Ω × [0, T]. The results of computational experiments on the solution of the IBVPs in a circular spatial domain are presented. These results show that the use of the exact integration with respect to ρ can substantially reduce the decrease in the accuracy of numerical solutions near the boundary ∂Ω, in comparison with the use of exclusively Gauss quadratures in calculating the potential. AMS Mathematical Subject Classification: 80М15, 65Е05

Download file
Counter downloads: 241

Keywords

uniform convergence, operator, collocation, singular boundary element, single-layer heat potential, boundary integral equation, non-stationary heat conduction, равномерная сходимость, оператор, коллокация, сингулярный граничный элемент, тепловой потенциал простого слоя, граничные интегральные уравнения, нестационарная теплопроводность

Authors

NameOrganizationE-mail
Ivanov Dmitry Yu.Moscow State University of Railway Engeneering (MIIT)ivanovdyu@yandex.ru
Всего: 1

References

Hamina M., Saranen J. On the spline collocation method for the single layer heat operator equation // Mathematics of Computation. 1994. V. 62. No. 205. P. 41-64. DOI: https:// doi.org/10.1090/S0025-5718-1994-1208222-2
Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. М.: ГИФМЛ, 1962. 464 с.
Смирнов В.И. Курс высшей математики. Т. 4. Ч. 2. М.: Наука, 1981. 551 с.
Иванов Д.Ю. Устойчивая разрешимость в пространствах дифференцируемых функций некоторых двумерных интегральных уравнений теплопроводности с операторно-полугрупповым ядром // Вестник Томского государственного университета. Математика и механика. 2015. № 6 (38). С. 33-45. DOI: 10.17223/19988621/38/4
Иванов Д.Ю., Дзержинский Р.И. Решение задач Робена для двумерных дифференциально-операторных уравнений, описывающих теплопроводность в прямом цилиндре // Научно-технический вестник Поволжья. 2016. № 1. С. 15-17.
Иванов Д.Ю. Решение двумерных краевых задач, соответствующих начально-краевым задачам диффузии на прямом цилиндре // Дифференц. уравнения. 2010. Т. 46. № 8. С. 1094-1103.
Иванов Д.Ю. О решении плоских задач нестационарной теплопроводности коллокационным методом граничных элементов // Вестник Томского государственного университета. Математика и механика. 2017. № 50. С. 9-29. DOI: 10.17223/19988621/50/2.
Iso Y., Takahashi S., Onishi K. Numerical convergence of the boundary solutions in transient heat conduction problems // Topics in Boundary Element Research (C.A. Brebbia, ed.). V. 3. Berlin: Springer, 1987. P. l-24.
Hongtao Y. On the convergence of boundary element methods for initial-Neumann problems for the heat equation // Mathematics of Computation. 1999. V. 68. No. 226. P. 547-557.
Costabel M., Onishi K., Wendland W.L. A boundary element collocation method for the Neumann problem of the heat equation // Inverse and Ill-Posed Problems (H.W. Engl and C.W.Groetsch, ed.). Boston: Academic Press, 1987. P. 369-384.
Бреббия К., Теллес Ж., Вроубел Л. Методы! граничных элементов. М.: Мир, 1987. 524 с.
Onishi K. Convergence in the boundary element method for heat equation // Teaching for Robust Understanding of Mathematics. 1981. V. 17. P. 213-225.
 A refinement of the boundary element collocation method near the boundary of domain in the case of two-dimensional problems of non-stationary heat conduction with boundary conditions of the second and third kind | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/1

A refinement of the boundary element collocation method near the boundary of domain in the case of two-dimensional problems of non-stationary heat conduction with boundary conditions of the second and third kind | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/1

Download full-text version
Counter downloads: 607